Э хаббл обнаружил что в спектрах далеких галактик линии смещены
Вопросы § 67
Физика А.В. Перышкин
1.Что называется световым годом?
Световой год (св. год) — расстояние, пройденное светом в течение года.
2. Какой вывод следовал из моделей Вселенной, полученных А. А. Фридманом?
Вселенная не может оставаться постоянной, она должна расширяться или сжиматься под действием гравитационных сил.
3.Кто, когда и каким образом экспериментально подтвердил факт расширения Вселенной?
В 1929 г. Хаббл, наблюдая спектры далеких галактик с помощью телескопа с большим разрешением, обнаружил, что спектральные линии смещены в длинноволновую область, т. е. в сторону красных линий. В соответствии с эффектом Доплера 3 это означало, что расстояния между наблюдателем с Земли и галактиками увеличивалось, а частота исследуемого излучения уменьшалась. Более того, сопоставив расстояния до галактик и величину смещения в их спектрах, Хаббл открыл следующий закон (названный впоследствии его именем): скорости удаления галактик пропорциональны расстоянию до них.
где v — скорость движения галактики относительно наблюдателя, R — расстояние до неё, Н = 70 км/(с • Мпс) — постоянная Хаббла.
По смещению спектральных линий можно определять не только скорости галактик, но и расстояния до них.
Данный закон следовал из моделей Фридмана, описывающих расширяющуюся Вселенную. Поэтому можно сказать, что возможность расширения Вселенной была теоретически предсказана до открытия закона Хабблом.
Что такое красное смещение, и кто его открыл?
Идея расширяющейся Вселенной не сразу завоевала твердые позиции в научном мире. Она возникла благодаря спектральному анализу излучения космических объектов. О том, что представляет собой красное смещение, подтвердившее общепринятую теперь теорию разлета галактик, и кем это явление было открыто, – в материале 24СМИ.
Что такое красное смещение
Когда длина волн электромагнитного излучения какого-либо космического объекта увеличивается, то спектральные линии сдвигаются к красному концу спектра. Это явление, зафиксированное в тех случаях, когда объект удаляется от наблюдателя с околосветовой скоростью, получило в астрономии название «красное смещение». В зависимости от причины ученые выделяют три вида последнего: доплеровское, гравитационное и космологическое.
Суть последнего заключается в том, что для излучения далеких космических источников (звезд и галактик) характерно наличие «покраснения» спектра. Это свидетельствует о том, что упомянутые объекты удаляются друг от друга и от Млечного Пути, что и подводит к идее расширения Вселенной.
Чем объясняется красное смещение в спектрах галактик
Красное смещение ближайшего к Солнечной системе квазара 3C 273 равно всего z = 0,158 / ESA/Hubble & NASA
Сущность описываемого эффекта формулируется так: чем линии ближе к красной стороне спектрограммы, тем выше скорость, с которой растет дистанция между наблюдателем и источником излучения.
Открытие явления
Красное смещение открыл американец Весто Слайфер еще в начале XX века: спектральный анализ ряда галактик показал наличие сдвига длин волн испускаемого ими излучения в красную область. Истолковать это с точки зрения какой-либо космологической теории на том этапе развития астрофизики представлялось невозможным. Поэтому ученый воспользовался для объяснения обнаруженного явления представлениями о доплеровском эффекте, согласно которым вышло, что галактики стремительно удалялись от Солнечной системы.
Следующий шаг сделал Эдвин Хаббл, обнаруживший связь между расстоянием до галактики и степенью сдвига спектральных линий в красную сторону. Большее смещение характерно для трудноразличимых, далеких астрономических объектов, принимаемых первоначально за туманности. Отсюда последовал вывод: по мере удаления растет и скорость. Опираясь на эффект Доплера, Хаббл заключил, что все видимые галактики «разбегаются» со скоростями, линейно зависящими от расстояния между ними.
Так астроном пришел к открытию своего закона, выражающегося формулой v = Hr, где v – скорость удаления галактики, r – расстояние до нее, H – коэффициент пропорциональности. Обнаруженные после изысканий Хаббла галактики тоже подчиняются этому закону, а значит, сделанные американским астрономом выводы приобрели иной масштаб – красное смещение в спектрах галактик свидетельствует о расширении Вселенной.
Как определяют расстояние до галактик
Благодаря закону Хаббла современные исследователи космоса получили инструмент, способствующий насколько это возможно точному определению местоположения галактик и их скоплений.
По закону Хаббла скорость удаления исследуемого объекта обязана быть равной расстоянию до него, умноженному на число Н, названное в честь выведшего эту зависимость ученого. Сегодня постоянная Хаббла принимается равной H = 70 км/(с•Мпк), где Мпк – мегапарсек. Расстояние по красному смещению определяют, используя этот закон: находят величину сдвига в красную область и делят на упомянутый фиксированный коэффициент.
Применяя закон Хаббла, астрономы оценивают размеры Вселенной. Они измеряют величины сдвигов спектральных линий излучений наиболее удаленных объектов и используют постоянную Хаббла для определения расстояний до галактик. Таким образом, красное смещение помогает установить скорость космического объекта, а следовательно, и его дальность.
Красное смещение представляет собой общепризнанный метод сравнения расстояний до наиболее отдаленных источников излучения. Так, в 2011 году астрономы зарегистрировали объект, находящийся дальше всех наблюдаемых человечеством – гамма-всплеск, исходящий от звездного взрыва и получивший имя GRB 090429B. Исследователи сумели датировать это событие: согласно их расчетам, звезда «полыхнула» 13,14 млрд лет назад, практически сразу после Большого взрыва.
Сделанное телескопом «Хаббл» фото галактики GN-z11, свет от которой шел до Земли 13,4 млрд лет / ESA/Hubble & NASA
На сегодняшний момент самой дальней из наблюдаемых галактик признана GN-z11. В 2016 году благодаря космическому телескопу, названному в честь Хаббла, астрономы установили, что по времени возникновения этот объект относится к первым страницам истории Вселенной – несколько сотен миллионов лет после взрыва, создавшего сущее. Анализ показателя «покраснения» в спектрограмме GN-z11 позволил астрофизикам определить степень воздействия расширения Вселенной на изучаемый объект. Величина превысила измеренные в других случаях: красное смещение галактики оказалось равно 11,1.
Реликтовое излучение
Наибольшее красное смещение фиксируют в процессе анализа реликтового излучения. Последнее представляется еще одним фактом, свидетельствующим о расширении Вселенной. Его открыли в 1965 году. Это слабое фоновое радиоизлучение, приходящее к нам равномерно со всех сторон с очень высокой степенью изотропности. Никакие найденные космические объекты не могли бы испускать подобное в текущее время.
Единственным объяснением этого феномена является излучение Вселенной в раннюю эпоху. По расчетам, оно берет начало примерно через 300 тысяч лет после Большого взрыва, когда космическое пространство только начало эволюционировать. Для реликтового излучения космологический фактор Z, использующийся для количественной характеристики эффекта красного смещения, приближается к 1400.
Другая теория
Современные астрономы единогласно объясняют красное смещение с помощью эффекта Доплера, ведущего к идее расширения Вселенной. Но встречается и альтернативная гипотеза, призванная опровергнуть общепринятую теорию.
Некоторые ученые высказали мысль о том, что причина красного смещения вовсе не в сверхскоростном разбегании галактик друг от друга, а в «старении света». Согласно этому допущению, свет краснеет в результате того, что преодолевает наполненное разреженным газом межгалактическое пространство. Излучение теряет короткие волны, из-за чего в свете туманностей и наблюдается покраснение. Причем без сдвига линий в спектре.
Гипотеза основывается на предположении о том, что за время блуждания по космическим просторам свет частично лишается энергии. Поэтому волны удлиняются, демонстрируя красное смещение, никак не указывающее при этом на разбегание галактик. Утверждение не располагает доказательной базой, поскольку потеря светом энергии – явление, не подтвержденное наукой.
Красное смещение и квазары
На расширение Вселенной указывает и анализ спектрограмм квазаров – предельно удаленных источников радиоизлучения. Исследования позволили установить: спектральные линии этих излучающих объектов в значительной мере смещены в сторону длинных волн. Ни одна галактика не показывала прежде такого красного смещения в собственном спектре.
С точки зрения закона Хаббла, величина сдвига в сторону «покраснения» указывает на то, что масса, скорость и расстояние до квазаров огромны. Это источники мощнейшего излучения, которые значительно удалены от Земли. Скорости квазаров, находящихся в миллиардах световых лет от Солнечной системы, достигают десятков тысяч км/сек.
Квазары – пример того, что максимально далекое астрономическое тело обладает соответствующими дистанции спектральным сдвигом и скоростью. Это убеждает в следующем: красное смещение означает отсутствие стационарности у Метагалактики, как ученые называют доступную для изучения часть наблюдаемой Вселенной, а не «старение света».
Синее смещение
Есть и противоположный красному смещению эффект – синее смещение. Такое название дали явлению, при котором линии видимого электромагнитного излучения в спектрах далеких галактик характеризуются сдвигом к коротковолновому концу. Этот феномен тоже объясняется движением источника излучения, только в этом случае он становится не дальше, а ближе. Существуют модели Вселенной, где ее эволюционное развитие на отдельной стадии предполагает, что свободная электромагнитная волна испытывает космологическое синее смещение.
Исследуя удаляющиеся объекты, теоретически астрономы сталкиваются только с красным смещением, но некоторые квазары и радиогалактики образуют направленные в нашу сторону джеты – лучи, преодолевающие большие расстояния. Эта струя вещества набирает скорость, приближающуюся к световой. И тогда в соответствии с доплеровским эффектом наблюдатель обнаруживает «посинение» спектра. Однако последнее не свидетельствует о приближении, так как по причине расширения при всей своей скорости джеты «улетают» в противоположную сторону.
Фотографии квазара GB1508+5714, сделанные в оптическом и рентгеновском диапазонах телескопом «Чандра» / NASA/STScI/CXC/SAO/A.Siemiginowska
Пример такого явления ученые нашли в квазаре GB1508+5714, который удаляется от нашей галактики со скоростью, превышающей световую в 1,13 раза, и имеет красное смещение 4,3. Джет этого объекта направлен на смотрящего с Земли, но скорость его частиц не достигает световой, поэтому расстояние между наблюдателем и квазаром неминуемо увеличивается, а не сокращается.
Современные космологические модели Вселенной
В классической науке существовала теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучалось движение планет и комет, описывались звезды, создавалась их классификация, что было, конечно очень важно. Но вопрос об эволюции Вселенной не ставился. Согласно классической космологии Ньютона, пространство и время однородны и изотропны, абсолютны и бесконечны. Вселенная стационарна, изменяться могут конкретные космические системы, но не мир в целом.
Однако признание бесконечности Вселенной приводило к двум парадоксам: гравитационным и фотометрическим. Суть гравитационного парадокса заключается в том, что если Вселенная бесконечна и в ней существует бесконечное количество небесных тел, то сила тяготения будет бесконечно большая, и Вселенная должна сколлапсировать, а не существовать вечно. Фотометрический парадокс: если существует бесконечное количество звезд, и они распределены в пространстве равномерно, то должна быть бесконечная светимость неба. На этом фоне даже Солнце, казалось бы, черным пятном, но этого нет.
Эти космологические парадоксы оставались неразрешимыми до двадцатых годов ХХ века, когда на смену классической космологии пришла релятивистская. До этого времени наука не располагала теоретически осмысленными астрономическими данными, свидетельствующими о крупномасштабной эволюции вещества. После открытия явления естественной радиоактивности стала неизбежной мысль о нестабильности космической материи вообще, изменчивости химического состава Вселенной в особенности.
Первая релятивистская космологическая модель Вселенной была разработана А. Эйнштейном в 1917 году. Она основывалась на уравнении тяготения, введенного Эйнштейном в общей теории относительности. В соответствии с представлениями классической астрономии о стационарности Вселенной, он исходил из предположения о неизменности свойств Вселенной, как целого во времени (радиус кривизны пространства он считал постоянным). Эйнштейн даже видоизменил общую теорию относительности, чтобы она удовлетворяла этому требованию, и ввел дополнительную космическую силу отталкивания, которая должна уравновесить взаимное притяжение звезд. Модель Эйнштейна носила стационарный характер, поскольку метрика пространства рассматривалась как независимая от времени. Время существования Вселенной бесконечно, т.е. оно не имело ни начала, ни конца, а пространство было безгранично, но конечно.
В 1922 году российский математик и геофизик А.А. Фридман предположил нестационарное решение уравнением тяготения Эйнштейна, где метрика рассматривалась как меняющаяся со временем. Он доказывал, что Вселенная не может быть стационарной, она должна либо расширяться, либо сжиматься. А. Эйнштейн сначала отрицательно отнесся к работам Фридмана, однако вскоре признал ошибочность своей критики.
Модели Вселенной А.А. Фридмана вскоре получили подтверждение в наблюдениях движений далеких галактик – в эффекте «красного смещения», открытом в 1929 году американским астрономом Э. Хабблом. Хаббл обнаружил, что в спектрах далеких галактик спектральные линии смещены к красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении света происходит «покраснение», т.е. линии спектра сдвигаются в сторону более длинных красных волн. Если обнаруженное Хабблом красное смещение понимать как результат эффекта Доплера, то это означает, что галактики «удаляются» от нас со скоростью, линейно зависящей от расстояния. В настоящее время, уже зарегистрированы скорости удаления, порядка 100000 км/сек для наиболее далеких из наблюдаемых галактик.
Разбегание галактик не следует представлять себе как некое обычное движение в не изменяющемся со временем пространстве. Это не движение объектов в неизмененном пространстве, а эффект, обусловленный новыми свойствами самого пространства – нестабильностью его материи. Итак, ни галактики расходятся в остающемся постоянном пространстве, а само пространство расширяется (меняется его метрика) с течением времени. Для большей ясности можно привести двухмерную модель, наглядно иллюстрирующую фридмановское расширение. Возьмем резиновую сферу и будем ее надувать. Тогда все точки на поверхности будут удаляться друг от друга, причем из любой точки все остальные будут выглядеть разбегающимися. Таким образом, то обстоятельство, что от данной точки все остальные удаляются, отнюдь, не свидетельствует о каком-то центральном, привилегированном положении этой точки.
От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва, заполнившего все пространство. В итоге каждая частица материи устремилась прочь от любой другой. Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру 100000 млн. градусов по Кельвину. При такой температуре (выше температуры центра самой горячей звезды) молекулы, атома и даже ядра атомов существовать не могут. Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны. Плотность вещества Вселенной спустя 0,01 с после взрыва была огромной – в 4000 млн раз больше, чем у воды. В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд градусов. При этой температуре начали образовываться ядра атомов, в частности, ядра тяжелого водорода и гелия. Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино. Только по истечении нескольких сотен тысяч лет начали образовываться атомы, главным образом водорода и гелия, образовавшие водородно-гелиевую плазму.
Существование Вселенной в качестве водородно-гелиевой плазмы подтверждается данными астрономии. В 1965 году было обнаружено так называемое «реликтовое» радиоизлучение Вселенной, представляющее собой излучение горячей плазмы, сохранившееся с того времени, когда звезд и галактик не было.
В рамках модели Фридмана вопросы о конечности и бесконечности пространства и времени в определенном смысле становятся эмпирически верифицируемыми. Нестационарный мир Фридмана, вообще говоря, может иметь положительную кривизну (закрытая модель) и отрицательную кривизну (открытая модель), он может иметь одну особую временную точку— начало времени (расширяющаяся Вселенная). Но он может иметь и бесконечно много особых точек. В этом случае ни одна из них не может считаться за начало времени, а их наличие просто означает, что во Вселенной периоды расширения сменяются периодами сжатия, когда галактики «сжимаются» (красное смещение сменяется фиолетовым), плотность вновь принимает бесконечное значение, а затем вновь начинает расширяться (пульсирующая Вселенная).
Закон Хаббла
Зако́н Ха́ббла (закон всеобщего разбегания галактик) — эмпирический закон, связывающий красное смещение галактик и расстояние до них линейным образом [1] :
С помощью этого закона можно рассчитать так называемый Хаббловский возраст Вселенной:
Этот возраст является характерным временем расширения Вселенной на данный момент и с точностью до множителя 2 соответствует возрасту Вселенной, рассчитываемому по стандартной космологической модели Фридмана.
Содержание
История открытия
В 1913—1914 годах американский астроном Весто Слайфер установил, что Туманность Андромеды и ещё более десятка небесных объектов движутся относительно Солнечной системы с огромными скоростями (порядка 1000 км/сек). Это означало, что все они находится за пределами Галактики (ранее многие астрономы полагали, что туманности представляют собой формирующиеся в нашей Галактике планетные системы). Другой важный результат: все исследованные Слайфером туманности, кроме 3, удалялись от Солнечной системы. В 1917—1922 годах Слайфер получил дополнительные данные, подтвердившие, что скорость почти всех внегалактических туманностей направлена прочь от Солнца. Артур Эддингтон на основе обсуждавшихся в те годы космологических моделей Общей теории относительности предположил, что этот факт отражает общий природный закон: Вселенная расширяется, и чем дальше от нас астрономический объект, тем больше его относительная скорость.
Теоретическая интерпретация
С точки зрения классической механики, закон Хаббла можно наглядно объяснить следующим образом. Когда-то давно Вселенная образовалась в результате Большого взрыва. В момент взрыва различные частицы материи (осколки) получили различные скорости. Те из них, которые получили бо́льшие скорости, соответственно успели к настоящему моменту улететь дальше, чем те, которые получили меньшие скорости. Если провести численный расчёт, то окажется, что зависимость расстояния от скорости оказывается линейной. Кроме того, получается, что эта зависимость одна и та же для всех точек пространства, то есть, по наблюдениям за разлетающимися осколками нельзя найти точку взрыва: с точки зрения каждого осколка, именно он находится в центре. Однако, несмотря на такую наглядность, следует помнить, что расширение Вселенной должно описываться не классической механикой, а общей теорией относительности.
За несколько лет до экспериментального открытия закона Хаббла Александр Фридман вывел теоретически решения уравнения Эйнштейна для всей Вселенной, и в результате было получено, что если распределение вещества в ней в среднем равномерно, то она должна или сжиматься, или расширяться, причём в последнем случае должен наблюдаться линейный закон между расстоянием и скоростью убегания. Эта особенность решений Фридмана была сразу же отождествлена с явлением, открытым Хабблом.
В соответствии с этой (общепринятой) моделью космологическое красное смещение нельзя интерпретировать как Эффект Доплера, так как получаемая из наблюдаемого z по формулам этого эффекта скорость не соответствует (лишь приближённо равна) никакой скорости в смысле изменения космологического расстояния между галактиками. Галактики неподвижны (за исключением пекулярных собственных скоростей), а расширяется пространство, что и вызывает расширение волнового пакета. (См. в статье Космологическое красное смещение). Соотношение
является приближённым, в то время как равенство
где — расстояние в данный момент, есть точное равенство, то есть красное смещение линейно связано с расстоянием только приближённо для близких галактик, а скорость их удаления линейно возрастает с расстоянием точно. Таким образом, в последней формуле скорость V не соответствует скорости, рассчитываемой по эффекту Допплера.
Оценка постоянной Хаббла и её физический смысл
В процессе расширения, если оно происходит равномерно, постоянная Хаббла должна уменьшаться, и индекс «0» при её обозначении указывает на то, что величина Н0 относится к современной эпохе. Величина, обратная постоянной Хаббла, должна быть в таком случае равна времени, прошедшему с момента начала расширения, то есть возрасту Вселенной.
Возможная нелинейность закона
В наше время наблюдениями, говорящими в пользу существования тёмной энергии, были, по-видимому, обнаружены отклонения от линейного закона Хаббла (как связи наблюдаемого красного смещения с расстоянием). Было обнаружено, что, по-видимому, наша Вселенная расширяется с ускорением. [5] Этот факт не отменяет закона Хаббла, если его понимать как зависимость от расстояния в данный конкретный момент времени, то есть если учесть, что далёкие объекты мы наблюдаем в прошлом.
Хаббла закон
Закон Хаббла (закон всеобщего разбегания галактик) — правило физической космологии, согласно которому красное смещение удалённых объектов пропорционально их расстоянию от наблюдателя. Таким образом, чем дальше от нас галактика, тем быстрее она от нас удаляется.
Другими словами, между расстояниями D до галактик и скоростями их удаления Vr (разбегания) наблюдается линейная зависимость:
.
Чем дальше от наблюдателя космический объект (галактика, квазар), тем быстрее он удаляется.
На каждый миллион парсек расстояния до объекта его скорость убегания увеличивается приблизительно на 75 км/с.
,
С помощью этого закона можно рассчитать так называемый Хаббловский возраст Вселенной (в предположении, что «разбегание» галактик действительное):
,
этот возраст лишь по порядку соответствует возрасту Вселенной, рассчитываемому по стандартной космологической модели Фридмана.
Содержание
Суть закона Хаббла
С точки зрения классической механики, закон Хаббла можно наглядно объяснить следующим образом. Когда-то давно Вселенная образовалась в результате Большого взрыва. В момент взрыва различные частицы материи (осколки) получили различные скорости. Те из них, которые получили бо́льшие скорости — соответственно успели к настоящему моменту улететь дальше, чем те, которые получили меньшие скорости. Если провести численный расчёт, то окажется, что зависимость расстояния от скорости оказывается линейной. Кроме того, получается, что эта зависимость одна и та же для всех точек пространства, то есть, по наблюдениям за разлетающимися осколками нельзя найти точку взрыва: с точки зрения каждого осколка, именно он находится в центре. Однако, несмотря на такую наглядность, следует помнить, что расширение Вселенной должно описываться не классической механикой, а общей теорией относительности.
Первое замечание касается того, учитывается ли при наблюдениях тот факт, что из-за того, что свет идёт от галактик миллионы лет, мы наблюдаем их в прошлом. В результате, поскольку они удаляются от нас, в настоящий момент они должны находиться уже дальше. Вопрос: для какого из двух расстояний определена зависимость Хаббла? Ответ: до середины прошлого века это не имело значения. Из графика Хаббла видно, что наибольшие скорости галактик, рассмотренных Хабблом, составили до 1000 км/с. В принципе это большая скорость, но за время движения света от них до Земли, они всё равно успели сдвинуться на незначительный процент общего расстояния.
Экспериментальное открытие
Закон Хаббла установлен экспериментально Э. Хабблом в 1929 для галактик, до которых было определено расстояние по ярчайшим звёздам. Исходное наблюдение состояло в том, что красные линии в спектрах внегалактических туманностей смещаются пропорционально расстоянию до них. Позднее закон был подтверждён по наблюдениям большого количества галактик.
Теоретическая интерпретация
За несколько лет до экспериментального открытия Александром Фридманом были теоретически решены уравнения Эйнштейна для всей Вселенной и в результате было получено, что если распределение вещества в ней в среднем равномерно, то она должна или сжиматься или расширяться, причём в последнем случае должен наблюдаться линейный закон между расстоянием и скоростью убегания. Эта особенность решений Фридмана была сразу же отождествлена с явлением, открытым Хабблом.
В соответствии с этой (общепринятой) моделью космологическое красное смещение нельзя интерпретировать как Эффект Доплера, так как получаемая из наблюдаемого z по формулам этого эффекта скорость не соответствует (лишь приближенно равна) никакой скорости в смысле изменения космологического расстояния между галактиками. Галактики неподвижны (за исключением пекулярных собственных скоростей), а расширяется пространство, что и вызывает расширение волнового пакета. (См. в статье Космологическое красное смещение). Так соотношение
является приближённым, в то время как равенство
Оценка постоянной Хаббла и её физический смысл
В процессе расширения, если оно происходит равномерно, постоянная Хаббла должна уменьшаться, и индекс «0» при её обозначении указывает на то, что величина Н0 относится к современной эпохе. Величина, обратная постоянной Хаббла должна быть в таком случае равна времени, прошедшему с момента начала расширения, то есть, возрасту Вселенной.
Значение Н0 определяется по наблюдениям галактик, расстояния до которых измерены без помощи красного смещения (прежде всего, по ярчайшим звёздам или цефеидам). Большинство независимых оценок Н0 дают для этого параметра значение 70—80 км/с на мегапарсек. Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек, удаляются от нас со скоростью 7000—8000 км/с. В настоящее время (2009) наиболее надёжной (хотя и модельно зависимой) считается оценка Н0=(74,2 ± 3,6) км/с/Мпк.
Проблема оценки Н0 осложняется тем, что, помимо космологических скоростей, обусловленных расширением Вселенной, галактики ещё обладают собственными (пекулярными) скоростями, которые могут составлять несколько сотен км/с (для членов массивных скоплений галактик — более 1000 км/с). Это приводит к тому, что закон Хаббла плохо выполняется или совсем не выполняется для объектов, находящихся на расстоянии ближе 10-15 млн св. лет, то есть как раз для тех галактик, расстояния до которых наиболее надёжно определяются без красного смещения.
Закон Хаббла плохо выполняется и для галактик на очень больших расстояниях (в миллиарды св. лет), которым соответствует величина z > 1. Расстояния до объектов с таким большим красным смещением теряют однозначность, поскольку зависят от принимаемой модели Вселенной и от того, к какому моменту времени они отнесены. В качестве меры расстояния в этом случае обычно используется только красное смещение.
Возможная нелинейность закона
В наше время наблюдениями, говорящими в пользу существования тёмной энергии, были, по-видимому, обнаружены отклонения от линейного закона Хаббла (как связи красного смещения с расстоянием). Было обнаружено, по-видимому, что наша Вселенная расширяется с ускорением. Этот факт не отменяет закона Хаббла, так как последний действует на более близких расстояниях, чем эти новые эффекты.