бентонитовый раствор для стены в грунте
Бентонит для технологии «Стена в грунте»
Технология «стена в грунте» подразумевает под собой возведение подземной ограждающей конструкции с помощью выемки земли из траншеи и заполнении ее глинистым раствором с тиксотропными свойствами, которые очень важны при возведении конструкций в водонасыщенных и неустойчивых грунтах.
Наиболее подходящими для использования в данной технологии являются бентонитовые глины. Бентонит «стена в грунте» представляет собой природный алюмосиликат. Он способен разбухать при смачивании, увеличиваясь в объеме в 15-16 раз. Незаменимым сырьем при создании ограждающих конструкций бентонит сделала его особенность создавать плотный и непроницаемый для влаги гель в неограниченном количестве пространства.
На сегодняшний день бентониты для «стены в грунте» представлены в большом ассортименте. Покупателю нередко сложно разобраться в нюансах использования каждого конкретного бентонита, и часто это приводит к выбору одной из наиболее дешевых марок. К сожалению, такая экономия не оправдана и может обернуться непредвиденными трудностями и дополнительными тратами. Отечественные марки, хотя и дешевле, но не могут предложить нужный уровень качества и не обладают необходимыми для этой технологии характеристиками.
Лучшим выбором для устроения конструкций по технологии «стена в грунте» является бентонит, разработанный специально под эту технологию. Одним из таких материалов является бентонит марки Cebogel. Его свойства позволят выполнить задачу не только с соблюдением всего технологического процесса, но и обеспечить конструкции долгий срок эксплуатации и высокое качество.
Компания Cebo Holland, европейский производитель бентонитовых смесей, предлагает бентонитовые смеси Cebogel OCMA и Cebogel OCMA Plus, созданные с учетом всех особенностей технологии «стена в грунте» и полностью соответствующие международным стандартам качества и безопасности.
В бентонитах «стена в грунте» Cebogel присутствуют модифицированные полимерные добавки, превосходно регулирующие водоотдачу. К тому же они легко перерабатываются и обладают наилучшим соотношением цена-качество.
Говоря о свойствах бентонитов Cebogel OCMA и Cebogel OCMA Plus, стоит перечислить следующие их особенности:
Дополнительно следует отметить, что бентониты «стена в грунте» производства Cebo Holland легко утилизируются и пригодны для неоднократного использования и переработки. Все это делает бентониты этой марки неприхотливыми, экономичными, а, главное, идеально подходящими для реализации технологии «стена в грунте».
Наша компания готова предложить своим покупателям высококачественные бентонитовые смеси Cebogel по максимально низкой цене в требуемом объеме. Дополнительно предоставляется услуга технического сопровождения крупных проектов, для чего на объект выезжает технический специалист, профессионал в данной области. Узнать подробнее о наших предложениях, покупатели могут, связавшись по телефону или заполнив форму для обратного обращения.
Бентонит и его применение в строительстве
Заявки на поставку бентонита отправляйте на SALES@OBORUDKA.RU
Бентонит это природный глинистый минерал
Бентонит получил свое название по наименованию одного из месторождений в США, Бентона. Бентонит (бентонитовая глина) – это природный глинистый минерал. В нем содержится 70% и более особого минерала монтмориллонита. Монтмориллонит – один из высокодисперсных слоистых алюмосиликатов. Чем больше в смеси монтмориллонита, тем выше ее гидрофильность, главное свойство этого сорта глины. Бентонит разбухает при попадании в него воды, гидратации. Также этот материал нетоксичен и обладает хорошей химической стойкостью, поэтому его часто применяют во многих сферах промышленности (в том числе – в пищевой) и при строительстве.
Так, в пищевой промышленности смесь считается добавкой E558, которую используют для предотвращения слеживания. Этот материал используют даже в виноделии. Основное его назначение при изготовлении вин – ускорение процесса осветления сусла и других виноматериалов, а также стабилизация и предохранение вин от белковых помутнений.
Применение бентонита в промышленности
Бентонит является биологически активным веществом, с чем связано его использование в сельском хозяйстве и животноводстве. Добавление минерала в корм животных и в удобрения для растений благотворно влияет на их производительность.
Разумеется, в наибольших масштабах бентонит применяется в строительстве, например, в гидростроительстве и в бестраншейном строительстве, при бурении, для формирования формовочных смесей в литейном производстве, при горных работах, строительстве горных выработок и т.п.
Бентонит незаменим в качестве основного компонента буровых растворов при бурении скважин и переходов. Такие растворы используют для удаления обломков, крошки и прочих загрязнений из забоев. Например, использование буровых растворов с бентонитом необходимо в условиях бурения в городской среде, то есть во время бурения микротоннелей для бестраншейной прокладки различных коммуникаций. Он не только снижает временные и качественные потери, но и обеспечивает цементацию грунтов. Можно сказать, что глина позволяет укрепить стенки канала, снизить просачивание воды, улучшить скольжение трубопровода по каналу, охладить буровую головку во время бурения в слежавшихся грунтах.
Бентонит использует также при методе строительства, именуемом «стена в грунте». Его используют, когда возникает необходимость в возведении сооружений, которые находятся достаточно глубоко, ниже уровня грунтовых вод.
Другой сферой применения минерала является строительство инженерных коммуникаций в сложных с геологической точки зрения условиях, например, в местах с неустойчивыми грунтами или высоким давлением грунтовых вод. В этом случае соответствующий раствор подают в призабойные области под давлением. Эти меры служат для поддержания стабильности забоя.
В литейном производстве бентониту отводится роль связующего материала в формовочных смесях, то есть в данном случае важны именно склеивающие свойства глины. Главными компонентами формовочных смесей служат песок и глина, а сами они используются для изготовления специальных форм, которые в дальнейшем служат для отливок как из цветных, так и из черных металлов.
Отметим также, что бентонитовая глина в каждом из случаев должна обладать особыми свойствами и характеристиками. Например, при использовании этого материала при бурении важны такие качества, как выход раствора, вязкость, условная вязкость, показатель фильтрации и т.п. В литейном производстве в то же время обращают внимание на другие свойства материала: предел прочности при сжатии влажного вещества, предел прочности при разрыве, коллоидальность и термическую устойчивость.
Метод Стена в грунте
Разработка траншеи грейферной установкой
Метод Стена в грунте – это технология крепления стен котлована и устройство постоянного фундамента здания на его основе. Она состоит в возведении железобетонных стен подземных сооружений в траншеях-щелях до рытья котлована. Применяется при строительстве городских подземных сооружений (транспортных тоннелей и станций метрополитена, парковок и гаражей, многоярусных подземных комплексов и т. п.), фундаментов домов и мостов, подпорных стен, противофильтрационных завес. Метод применим практически в любых типах грунтов. Ограничение: скальные, текучие и плывунные, дисперсные насыпные, грунты с крупными пустотами.
Стоимость
Компания ООО «БЕСТ-СТРОЙ» работает по методу «стена в грунте», стоимость — от 22000 рублей за куб. м.
Работы | Устройство шпунта | Разработка котлована | Забивка свай | Вибро-погружение свай | Вдавливание свай |
Ед. изм. | п.м. | куб.м | п.м. | п.м. | п.м. |
Цена, руб. | от 550 | от 450 | от 500 | от 650 | от 750 |
Устройство стены в грунте
Основные технологические операции устройства стены
Траншеи-щели разрабатываются сухим способом в случае глинистых грунтов с невысоким показателем текучести, на небольшую глубину — до 7 м. В остальных случаях при проходке их заполняют тиксотропными суспензиями, которые и удерживают стенки среза от обрушения. После этого тиксотропные суспензии заменяют специальными материалами: бетоном, различными смесями, сборными элементами, которые образуют в грунте несущие и ненесущие конструкции.
Устройство «стены в грунте» целесообразно применять в сложных гидрогеологических условиях, при неглубоком залегании водоупорного горизонта (отпадает необходимость в водопонижении, замораживании и т. п.), в стесненных условиях существующей застройки, при реконструкции действующих предприятий. В условиях больших городов, таких как Москва, когда очень высока плотность застроек, возникает сложность в ограждении строительного котлована. Компания БЕСТ-СТРОЙ удовлетворяет спрос на технологию, при которой во-первых, предотвращается проседание фундамента близ лежащих зданий, во-вторых, становится возможным расположение в непосредственной близости от действующих подземных сетей, в-третьих, конфигурация котлована может быть достаточно сложной — линейной или ломаного очертания.
Применение стены в грунте эффективно при возведениии фундаментов на застроенных территориях, небольших подземных сооружений на значительной глубине (обычно около 20 м). Технологические преимущества позволяют совмещать производство элементов основания и подвала, в том числе многоэтажных подземных сооружений.
Фундамент Стена в грунте
Технология «Стена в грунте» доступна в двух вариантах выполнения: буросекущая и разработкой траншеи. Согласно первой — выполняются буровые сваи на расстоянии, меньшем их диаметра и таким образом они входят в зацепление, «секут» друг друга, в итоге формируя цельное ограждение достаточной прочности. Метод буросекущих свай предоставляет возможность выполнить ограждение строительной площадки, подпорную стену, водопонижение или противофильтрационную завесу, но он не рассчитан на обустройство основания дома. А вот технология «разработкой траншеи» рассчитана! Она даёт технологические преимущества при строительстве многоэтажных зданий, в проекте которых предусмотрен многоярусная заглублённая часть, подземная парковка, гараж, хранилища, подвал. Фундамент по методу стены в грунте одновременно служит стенками подвала здания, упрощает строительство, избавляет от необходимости рытья котлована, экономит время, позволяет снизить расходы. Железобетонная противофильтрационная завеса надёжно защищает подземную часть здания от грунтовых вод, позволяет сократить издержки на водоотведение и откачку воды из фундамента в процессе строительства.
Разработка котлована после устройства стены в грунте
Несущая способность основания дома должна соответствовать весу возводимого строения плюс вес самой конструкции основания. Проектирование учитывает грунтовые условия, уровень залегания водоносного горизонта и несущих пластов, близость и давление, передаваемое близлежащими постройками, наличие коммуникаций в земле под территорией строительной площадки. При проектировании фундамента с точкой залегания ниже 3 метров, показатель глубины промерзания не учитывается. Проводится расчёт несущей способности, расчёт давления грунта, теплотехнический расчёт.
«Стена в грунте»: технология
В основе метода лежит технология устройства фундамента, основанная на разрабатывании траншеи. Узкие (0,6-1,2 м) и глубокие (до 20 м и более) выемки разрабатывают под защитой глинистого раствора, который благодаря достаточно высокой плотности защищает срез от обрушения внутрь.
Технологическая карта работ разрабатывается с учётом результатов инженерно-геологических изысканий. Ограничения для применения технологии связаны с наличием определённыз грунтовых условий: группы строительных грунтов выше третей, морёных и песчанных пород с включением валунов более 300 мм в диаметре; карсты, крупнообломочные грунты с пустотами, плывунные грунты, подвижные илы, грунтовые водоносные горизонты с избыточной фильтрацией, превышающей гидростатическое давление защитного глинистого раствора.
Схематично технология состоит из последовательности этапов:
Подготовительный этап: вынос всех наземных и подземных коммуникаций за территорию разработки; спланирована плащадка и устроена железо-бетонными плитами; ограждена территория; установлено и подготовлено к работе приготовительно-очистное оборудование для глинистого раствора.
Предварительный этап: поверхностная выемка почвы и выполнение форшахты — жёсткой железобетонной конструкции, ограничивающей просвет зоны выработки и соответствующей по ширине размерам будущей стены. Форшахта защищает от разрушения и опадания верхних слоёв почвы под собственным весом и под весом грейферного оборудования. Выполняется разбивка траншеи на захватки.
Выемка породы происходит под защитой глинистого раствора грейфером или гидрофрезой. Грунт изымается на поверхность, убирается из зоны производства, перемещается за территорию строительной площадки.
Разработка и бетонирование стены в грунте по технологии и на оборудовании Bauer
Защита выработки тиксотропным гидрораствором позволяет исключить применение свайных или шпунтовых ограждений, по организации искусственного водопонижения. Снижаются объёмы земляных работ, а значит и трудоёмкость. Сокращаются сроки строительства.
Для разработки задействуют специализированное буровое оборудование, в жёстких грунтах — гидрофрезы, a в мягких — грейферы (двух-челюстные узкие широкозахватные, закреплённые на жёсткой штанге), интегрированные в серийно выпускаемых установках в качестве основного или подвесного оборудования или устанавливаемые на гусеничные экскаваторы.
Траншеи отрывают поэтапно через одну отдельными участками — захватками, по ширине захвата грейфера. И подают в них бентонитовый раствор. В соответствии с технологией та часть раствора, что смешалась с грунтом благодаря постоянной циркуляции попадает в шламоотделитель, очищается от породы и поступает обратно в проходку.
Затем отрытый участок защищается по краям извлекаемыми или оставляемыми ограничителями (в виде железных балок, шпунтин или труб) по всей высоте. В него опускают заранее изготовленный арматурный каркас.
Перед бетонированием забой очищают от осадка, частичек грунта, шлама, смешавшихся с защитной суспензией. Для этого она вся удаляется и закачивается новая, очищенная. Бетонируют методом вертикально перемещающейся трубы. Применяются виброустановки и ковши-бункеры либо бетононасосы с бетоноукладчиком, оснащённым рукавом на телескопической стреле. Бетонолитная труба с приёмной воронкой помещается в траншею, не доходя до дна 0,3 м. Вытесняемый в процессе бетонирования защитный раствор откачивается насосом в накопительную ёмкость.
После того, как бетон наберёт прочность, начинаются землянные работы внутри периметра. Послойно ведётся разработка котлована. При необходимости, согласно расчётов горизонтальной нагрузки на ограждение, проводится укрепление стен грунтовыми анкерами. Особенность конструкции которых позволяет оставлять свободным пространство выемки для проведения строительных работ.
Наша техника
Мы используем следующие установки с подвесным грейферным ковшом:
Мы применяем буроинъекционные грунтовые анкеры вместо монтажа распорной системы, благодаря чему возможности метода значительно расширяются.
Закажите расчёт стоимости Стены в грунте
Заполните данные и отправьте — в ответ вы получите расчёт стоимости в первом приближении. Окончательная стоимость может зависеть от особенностей проекта.
Возведение сооружений способом стена в грунте
Метод стена в грунте является технологией возведения заглублённых строительных сооружений, к которым относятся ограждающие конструкции котлованов, подпорных стен, строительство фундаментов и различных подземных сооружений. Технология позволяет отказаться от использования шпунтов и создать прочную конструкцию, устойчивую к движению грунта.
Технология устройство стена в грунте лучше всего строить городские подземные конструкции: тоннели, парковки, подземные гаражи, многоярусные комплексы, станции метро.
ООО «Главрент» предлагает услуги по аренде спецтехники, применяемой для строительства по технологии стена в грунте. Опыт специалистов и большой парк грейферов, кранов, бурильных установок и вибропогружателей позволяет компании успешно решать большинство задач.
Принцип возведения сооружений способом стена в грунте
Она является простой в использовании: сначала подготавливается траншея, из которой производится выемка грунта, и проводятся мероприятия по предотвращению обрушения стенок. В подготовленную траншею опускается арматурный каркас, производится его бетонирование.
При строительстве используется следующая техника:
Навесное оборудование подбирается в зависимости от условий. Так, в тяжёлых грунтовых условиях допустимо применять установки с гидрофрезой или многошпиндельные буровые установки. Для обычных грунтов традиционно используют грейферы – подвесное оборудование для выемки грунта, устанавливаемое на гусеничные экскаваторы.
При расчёте несущей способности здания учитываются грунтовые условия – водоносные уровни и давление, которое может оказываться будущим объектом на близлежащие здания. Для сооружения определяется несущая способность, давление грунта, показатели глубины промерзания (при фундаментах с глубиной залегания выше 3 метров), выполняются теплотехнические расчёты.
«Сухая» и «мокрая» технология возведения
Различают два способа строительства: сухой и мокрый. Строительство «сухим» методом разрешается при отсутствии грунтовых вод и достаточной устойчивости самого грунта. Он наиболее более экономный и простой, так как при строительстве нет необходимости использования глинистого раствора.
«Мокрая» позволяет защитить вертикальные стенки траншеи с помощью вязкого глинистого раствора – бентонитовой суспензии. Это тиксотропный материал, который имеет стабильную предсказуемую структуру: не расслаивается в состоянии покоя, а при механическом воздействии разжижается до состояния текучести, оставаясь достаточно вязким, сохраняющим заданные показатели водоотдачи. Бентонит обладает ещё одним важным свойством: он является водоупором и в состоянии покоя (без механического воздействия) способен образовывать на стенах траншеи корку глины толщиной до 4 мм. Именно поэтому «мокрый» способ отлично подходит при строительстве стены в сложных гидрогеологических условиях, в т.ч. при неглубоком залегании водоупорного горизонта.
Приготовление тиксотропного раствора выполняется на основе специальных высокодисперсных или местных глин, удовлетворяющих требованиям по плотности, верхнему и нижнему пределам пластичности и набуханию. Приготовление глинистого раствора из местных материалов позволяет значительно удешевить строительство.
Основные методы устройства стены в грунте
Существует два основных способа возведения стены в грунте: с помощью буросекущих свай и разработки траншеи.
Возведение зданий с помощью свай заключается в строительстве сплошного ряда секущихся между собой (или касающихся друг друга) буронабивных или грунтоцементных свай. Бурение свай осуществляется в несколько потоков, точки бурения скважин второго потока подбираются таким образом, чтобы перекрыть часть сечения свай из первого потока. Несмотря на то, что несущая способность свай второго потока оказывается ниже, чем первой, в итоге формируется бетонная стена достаточной прочности.
С помощью буросекущих свай применяется при ограждении стройплощадки, строительстве подпорных стен, создания противофильтрационных завес и т.п. Для строительства основания дома способ буросекущих свай не подходит.
Строительство с помощью траншеи более эффективно. Сооружение стены до разработки котлована даёт технологическое преимущество при строительстве оснований зданий, где проектом предусматривается многоярусная подземная инфраструктура, включающая подвалы, цокольные этажи, парковки, гаражи или хранилища. Возведение сооружений способом стена в грунте с помощью траншейного метода отличается высокой надёжностью и позволяет защитить подземную инфраструктуру от грунтовых вод.
Разработка траншеи проводится захватками через одну, определяющий момент – ширина захвата грейфера. После бетонирования и схватывания захваток первой очереди приступают к бетонированию траншей второй очереди и т.д.
Технология строительства
Технологическая схема устройства включает следующие этапы:
«Стена в грунте» – это оптимальный способ строительства при постройке зданий на значительной (до 20 м) глубине вблизи имеющихся зданий. Такое возведение позволяет совместить строительство элементов основания будущего здания и подземной инфраструктуры.
Нельзя не отметить высокую скорость работ, низкий уровень шума и всесезонность метода: технология обустройства может применяться вне зависимости от сезона.
Среди недостатков можно выделить сложность работ в холодный период года: зимой глинистый раствор налипает на арматуру, из-за чего ухудшается её сцепление с бетоном. Данная проблема решается заменой монолитного каркаса на сборный железобетон.
Используемая техника
Для строительства и обустройства стены в грунте в ООО «Главрент» применяется следующая спецтехника:
Имеющееся оборудование позволяет строить стены шириной до 1200 мм и глубиной до 45 м. Доступный набор челюстей грейферной установки – 500, 600, 800 и 1000 мм.
Техника предоставляется в аренду с сертифицированным экипажем (зарплата специалистов включена в стоимость аренды) и оперативно доставляется до объекта. Возможна работа техники в две смены (смена – 11 часов), обеспечивается круглосуточная техническая поддержка.
Вся спецтехника находится в отличном состоянии, соответствует заявленным характеристикам и имеет все разрешительные документы на эксплуатацию.
Запросить детальный расчёт стоимости аренды можно на сайте ООО «Главрент». Итоговая стоимость аренды определяется проектом. Информацию об услугах и технических характеристиках имеющейся техники можно получить по телефону +7 (495) 120-16-64.
Устройство «стены в грунте» из монолитного железобетона
Устройство «стены в грунте» из монолитного железобетона
2. Машины и оборудование для устройства траншейных «стен в грунте»
3. Этапы производства подготовительных работ при сооружении «стены в грунте»
4. Этапы производства основных работ при сооружении «стены в грунте»
1. Введение
Патенты на устройство «стены в грунте» под защитой бентонитовой суспензии впервые были получены немецкими учеными Брандтом и Раннемом в 1912 году. В 1936 г. Летцтерр разработал машины для изготовления «стены в грунте» непрерывным способом.
В начале пятидесятых годов 20-го столетия профессоры Федер и Грац изобрели метод изготовления «стены в грунте» без использования обсадных труб, а профессор Лоренц предложил метод изготовления «стены в грунте», применяемый в настоящее время.
В настоящее время в больших городах возведение высотных зданий и строительство заглубленных сооружений сориентированы на использование метода «стена в грунте» вместо традиционных методов «открытый котлован» или «опускной колодец».
Метод «стена в грунте» предназначен для возведения заглубленных в грунт сооружений различного назначения. Сущность метода «стена в грунте» заключается в том, что стены заглубленных сооружений возводят в узких и глубоких траншеях, вертикальные борта которых, удерживаются от обрушения при помощи глинистой суспензии, создающей избыточное гидростатическое давление на грунт.
После устройства в грунте траншей необходимых размеров их заполняют, в зависимости от конструкции и назначения сооружения, монолитным железобетоном, сборными железобетонными элементами или глиногрунтовыми материалами. В результате этого в грунте формируют несущие стены сооружений или противофильтрационные диафрагмы.
По назначению заглубленные сооружения, возводимые методом «стена в грунте», классифицируются следующим образом:
Метод «стена в грунте» обладает рядом преимуществ по сравнению с другими методами строительства:
— возможность устройства глубоких котлованов в непосредственной близости от существующих зданий и сооружений, что особенно важно при строительстве в стесненных условиях, а также при реконструкции сооружений;
— резко уменьшается, а в некоторых случаях отпадает необходимость в устройстве водопонижения или водоотлива; уменьшаются объемы земляных работ;
— отпадает необходимость в устройстве обратных засыпок и, следовательно исключаются неравномерные просадки полов и отмосток в процессе их эксплуатации;
— появляется возможность одновременно производить работы по устройству надземных и подземных частей зданий, что резко сокращает сроки их строительства;
— бесшумность метода строительства. Измерения показывают, что уровень шума при строительстве «стена в грунте» ниже обычного шума дорожного движения.
Исключается понижение уровня грунтовых вод, так как бетон «стены в грунте» ограждает конструкцию от проникновения воды.
«Стены в грунте» классифицируются:
Способ сооружения ограждающих и несущих конструкций методом «стена в фунте» может применяться для любых конфигураций и размеров стен в плане. Глубина заложения «стены в фунте» ограничивается требованиями проекта и возможностями имеющегося в наличии оборудования.
Применение способа «стена в фунте» целесообразно при возведении подземных сооружений в стесненных условиях существующей застройки и реконструкции действующих предприятий.
Наибольший эффект достигается в тех случаях, когда «стена в фунте», прорезая водоносные пласты, заглубляется в водоупорный слой. В этом случае появляется возможность производить работы в котловане без устройства водопонижения.
Современные технологии позволяют устраивать конструкции подземных сооружений различных форм, но традиционными и наиболее часто встречающимися являются конструкции из прямолинейных стенок.
Расстояние между стенками, как правило, принимаются до 15-20 м из расчета прочности и устойчивости распорных конструкций. При расстоянии более 20 м устойчивость стен обеспечивается за счет устройства анкерных креплений.
Анкерные крепления «стены в фунте» в один или несколько ярусов следует устраивать в следующих случаях:
— при ширине котлована более 20 м;
— при ширине котлована более 10 м, когда в силу особенностей конструктивного решения могут быть использованы только временные расстрелы, требующие перекрепления.
Анкерные крепления следует использовать во всех грунтах, за исключением рыхлых песков, торфов и глин текучей консистенции.
Обеспечение устойчивости стен за счет применения наклонных анкеров является наиболее простым и эффективным способом.
Стены имеют толщины 500; 600; 800; 1000 и 1200 мм и возводятся из монолитного железобетона, отдельными секциями согласно проекта производства работ (ППР).
2. Машины и оборудование для устройства траншейных «стен в грунте»
Наиболее дорогостоящим и сложным является оборудование для образования узкой глубокой траншеи в грунтах I-IV групп на глубину до 50 м, шириной от 0,5 до 1,2 м.
Для разработки траншей используются следующие виды траншеепроходческого оборудования:
— оборудование вращательного действия с погружным приводом породоразрушающего инструмента;
— оборудование вращательного действия с расположенным на поверхности приводом породоразрушающего инструмента;
— оборудование ударного и ударно-вращательного действия;
— оборудование с породоразрушающим инструментом скребкового типа (экскаваторы-драглайны, скребковые траншеекопатели, экскаваторы с обратной лопатой, грейферные установки);
По способу извлечения разработанного фунта из траншеи все виды землеройных машин и оборудования подразделяются на две группы:
1. Машины и оборудование, землеройным инструментом которых является грейфер, осуществляющий подъем на поверхность разработанного грунта с выгрузкой в транспортное средство или отвал;
2. Машины и оборудование, разрабатывающие грунт специальным буровым инструментом с переводом его в рабочий глинистый раствор и с выносом на поверхность эрлифтной установкой.
В первом случае разработанный грунт не засоряет глинистый раствор, но увеличивается количество операций, связанных с подъемом и опусканием грейфера, а во втором случае необходима обратная циркуляция раствора с очисткой его от шлама.
Ниже приведены технологии устройства «стены в фунте», выполняемые некоторыми видами оборудования.
Разработка грунта в траншее грейферным оборудованием для устройства «стены в грунте»
В настоящее время в России широко применяют для разработки грунта и удаления его из траншеи высокопроизводительное импортное грейферное оборудование, подвешиваемое на телескопической штанге буровой гидравлической установки типа модели HR260 фирмы MAIT (Италия) или на тросовой подвеске специального гусеничного крана типа модели HS 855 HD фирмы Libherr (Германия), оснащенных дополнительным оборудованием для работы по технологии «стена в грунте».
Схема разработки захватки траншеи за один проход грейфера представлена на рис. 2.1.
После разработки траншеи на полную глубину производится проверка глубины траншеи, зачистка траншеи от слоя осыпавшего грунта и осадка глинистого раствора путем плавного опускания и перемещения грейфера по всей плоскости траншеи.
Разработка грунта в траншее барражными машинами непрерывного действия для устройства «стены в грунте»
Барражные машины непрерывного действия применяются для устройства противофильтрационных завес путем разработки грунта на прямолинейных участках большой протяженности на глубину до 30 м.
Разработка грунта в траншее барражными машинами производится под защитой глинистого раствора
Разрушенный грунт извлекается из траншеи эрлифтной установкой в виде пульпы.
Пульпа поступает на очистную установку, либо в отстойник. Очищенный от породы, отстоявшийся глинистый раствор возвращается в траншею. По мере продвижения барражной машины с образованием траншеи ведется подготовка уже разработанных участков к заполнению противофильтрационными материалами.
Рис. 2.1. Разработка захватки траншеи за один проход грейфера.
Для этого участок изолируется от полости остальной траншеи с помощью стальных разделительных инвентарных элементов.
Диапазон геологических условий для машин такого типа ограничен однородными, без крупных каменистых включений, разрезами, представленными породами с пределом прочности на сжатие до 40 МПа.
Барражная машина непрерывного действия модели БМ-0,5/50-2М БМ-0,5/50-3МЭ выпускает ОАО «ВИОГЕМ» имени С.Я. Жука.
Схема разработки грунта в траншее барражными машинами непрерывного действия с удалением пульпы из траншеи эрлифтной установкой представлена на рис. 2.2
По данным ОАО «СГСТУ ВИОГЕМ» производительность барражной машины непрерывного действия модели БМ-0,5/50-3МЭ для нормальных грунтовых условий составляет от 25 до 45 м 3 траншеи в час.
Разработка грунта в траншее барражными машинами циклического действия для устройства «стены в грунте»
Основной операцией технологии проходки барражными машинами циклического действия является поочередная разработка отдельных захваток при последовательном погружении бурового инструмента и его извлечении. При разработке частично перекрывающихся захваток с образованием сплошной полости траншеи глубиной до 30 м проблема отделения участков, подлежащих заполнению, решается посредством установки инвентарных разделительных элементов с последующим их извлечением.
При использовании в качестве материала «стены в грунте» жестких конструктивных элементов разработка траншеи может вестись без применения разделителей.
Схема разработки кольцевой «стены в фунте» барражной машиной циклического действия приведена на рис. 2.3.
Применение барражных машин цикличного действия наиболее целесообразно при строительстве сложных по конфигурации траншей для различных заглубленных сооружений.
Разработка грунта в траншее фрезерными машинами для устройства «стены в грунте»
Фрезерные машины типа СВД-500 и СВД-500Р предназначены для образования траншей в несвязных, полускальных и скальных фунтах. Машина СВД-500Р снабжена специальной тележкой из двух платформ на рельсовом ходу, каждая из которых снабжена электролебедкой грузоподъемностью 8 тс.
Буровой инструмент, подвешенный к базовой машине, скользит по полозьям направляющего шаблона, фиксирующего его положение.
В комплект фрезерной машины СВД-500 входят: компрессор ДК-9, ситогидроциклонная установка ЧСГУ-2, две глиномешалки МГ2-4, агрегат для приготовления и укладки глиногрунтовой пасты ГЗ-1, смеситель глинистых растворов БС-2, эрлифт.
Фрезерная машина обеспечивает разработку траншеи глубиной до 25 м. Работой машины управляет машинист-оператор из кабины, в которой установлен пульт управления. Машина при проходке перемещается на заданный интервал автоматически, при этом величина перемещения задается исходя из контрольных геологических условий грунта.
Схема разработки грунта в траншее фрезерными машинами для устройства «стены в грунте» приведена на рис. 2.4.
3. Этапы производства подготовительных работ при сооружении «стены в грунте»
Перед началом сооружения «стены в грунте» выполняются следующие подготовительные работы:
— ограждение строительной площадки;
— вскрытие и перенос подземных коммуникаций, попадающих в габариты стен;
— планировка поверхности площадки и устройства временных дорог;
— размещение временных административно-бытовых зданий;
— подготовка мест для складирования строительных материалов и конструкций;
— монтаж технологического оборудования.
Замена грунта на глубину не менее 3 м привозным песчано-глинистым грунтом с уплотнением (Купл ³ 0,95). Затем, вдоль оси стен производится разработка пионерной траншеи с естественными откосами 1,5-2,0 м.
Сооружение форшахты (направляющей стены).
В разработанной пионерной траншее сооружается монолитная железобетонная форшахта.
Форшахта предназначена обеспечивать:
— проектное направление разработки основной траншеи;
— необходимое положение грейфера в грунте;
— возможность подвески на ней арматурных каркасов, установки оборудования для проходки и бетонирования траншеи;
— отвод переливающегося через край глинистого раствора.
Конструкции форшахты определяются по проекту и сооружаются отдельными секциями из монолитного железобетона.
Монтаж и пуск бентонитовой установки
Перед разработкой траншеи необходимо произвести монтаж, опробование и пуск бентонитовой установки для приготовления, подачи, очистки и регенерации глинистого раствора, который первоначально должен заполнять пространство между стенками пионерной траншеи. Далее, по мере разработки грунта грейфером, в захватку должна производится непрерывная подача глинистого раствора с поддержанием его уровня не ниже 0,2-0,3 м от верха форшахты.
4. Этапы производства основных работ при сооружении «стены в грунте»
После сооружения форшахты, для устройства «стены в грунте», последовательно выполняются следующие основные технологические операции:
— установка и извлечение ограничителей захваток;
— установка секций арматурных каркасов;
— бетонирование траншеи методом вертикально перемещаемой трубы (ВПТ).
Схема строительства подземной части сооружения методом «стена в грунте» по последовательности выполнения технологических операций представлена на рис. 3.1.
Разработка траншей
Траншеи при строительстве подземных сооружений способом «стена в фунте» следует разрабатывать под защитой глинистого раствора, отдельными захватками последовательно одна за другой вдоль траншеи или поочередно на различных участках траншеи.
Способ и технологическая последовательность разработки траншей определяется ППР в соответствии с инженерно-геологическими условиями строительства, размерами и конфигурацией и назначением возводимой стены, характеристиками траншеепроходческого оборудования.
Длина отдельной захватки составляет, как правило, 2,0-6,0 м и определяется ППР, исходя из условия обеспечения устойчивости стен траншей при их разработке и размера рабочего органа траншеекопателя.
Захватка может быть пройдена за один или несколько проходов рабочего органа траншеекопателя на полную глубину траншеи.
После разработки захватки на полную глубину производится проверка глубины траншеи, зачистка траншеи от слоя осыпавшего грунта и осадка глинистого раствора путем плавного опускания и перемещения грейфера по всей плоскости траншеи, пробный забор шлама, контроль параметров и замена глинистого раствора.
Установка ограничителей захваток
Стальные разделительные элементы устанавливаются по краям захваток в качестве стыкового элемента. Для получения качественных стыков рекомендуется применять металлическую трубу с ребрами из уголков 75 ´ 75 мм. Уголки привариваются таким образом, чтобы при погружении трубы они врезались в борта траншеи менее чем на 30 мм.
Разделительные элементы являются сборными и по мере опускания в траншею, собираются из передовой ножевой секции длиной 6 м, рядовой секции 6 м и необходимого числа дополнительных рядовых секций длиной 1-2 м (в соответствии с глубиной траншеи).
Нижняя ножевая часть разделительного элемента должна быть заглублена в дно траншеи не менее, чем на 30 ¸ 50 см.
Разделительный элемент и верхняя концевая пластина крепятся на конструкции форшахты с применением специальных инвентарных устройств, с превышением уровня «воротника» форшахты.
После бетонирования захватки ограничители извлекаются через 1-3 часа (до начала сцепления с бетоном).
Установка арматурных каркасов
В состав каркаса входят необходимые закладные детали из листовой стали, монтажные петли, фиксаторы защитного слоя, обеспечивающие центрирование каркаса в траншее, трубы для пропуска грунтовых анкеров.
Секции арматурных каркасов, непосредственно, перед их установкой в захватку следует соединять между собой электродуговой сваркой отдельных элементов.
При глубине траншеи более 10-12 м каркас может состоять из отдельных секций, стыкуемых на высоте перед опусканием в траншею.
Внутри каркасов должны быть предусмотрены проемы с направляющими для установки бетонолитных труб.
Опускание каркаса производят в положении обеспечивающим его свободное прохождение в траншею при геодезическом контроле за вертикальностью и обеспечением проектной величины защитного слоя между несущей арматурой и грунтом.
При установке в захватку, арматурные каркасы устанавливаются на верхней части «воротника» форшахты с помощью поперечных труб или профильных балок так, чтобы продольные несущие стержни арматурных каркасов не доходили до низа траншеи на 25-30 см.
Бетонирование стен производится под защитой глинистого раствора, не позднее, чем через 4 часа после опускания арматурных каркасов в траншею.
Транспортирование бетонных смесей с бетонных заводов на стройку следует производить в автобетоносмесителях.
Бетонирование следует осуществлять методом вертикально перемещаемой трубы (ВПТ) с одновременной откачкой вытесняемого бентонитового раствора в емкость или разрабатываемую захватку.
Бетонирование каждой очередной секции следует проводить, не допуская перерывов в подаче бетона.
При бетонировании под глинистым раствором необходимо обеспечивать:
— изоляцию бетонной смеси от раствора в процессе ее подачи в траншею;
— отсутствие перемешивания с раствором при укладке;
— непрерывность бетонирования в пределах захватки;
— контроль за технологией в процессе бетонирования.
Траншеи следует бетонировать секциями с применением межсекционных ограничителей.
Бетонирование методом ВПТ ведется при помощи сборно-разборной или цельной бетонолитной трубы с внутренним диаметром 250-350 мм. Монтаж сборной бетонолитной трубы включает следующие операции:
— очистка и подготовка звеньев к работе;
— установка опорной рамы на «воротнике» форшахты;
— монтаж става бетонолитной трубы с последовательным наращиванием звеньев при помощи быстросъемных соединений, когда ранее смонтированная часть подвешивается на опорной раме;
— установку и закрепление на трубе приемного бункера емкостью не менее 1,2 объема бетонолитной трубы.
Схема бетонирования траншеи методом ВПТ представлена на рис. 3.2.
Рис. 3.2. Схема бетонирования траншей методом ВПТ
В верхнюю горловину трубы следует установить пробку (например, из опилок или пакли в чехле из мешковины) высотой 20-25 см, которая прикрепляется тросиком к верху приемного бункера.
Бетонная смесь из автобетоносмесителя загружается в приемный бункер в объеме на 20% превышающем объем бетонолитной трубы. После этого трубу необходимо поднять на 3-5 см и перерезать тросик, удерживающий пробку. Пробка под действием избыточного давления бетонной смеси передвигается по бетонолитной трубе и выталкивает находящийся в ней глинистый раствор, препятствуя расслоению и перемешиванию бетона. Для выпуска пробки, заполненную бетонной смесью трубу необходимо приподнять на 20-30 см и затем вновь заполнить приемный бункер при понижении уровня бетонной смеси до устья воронки.
Для продолжения бетонирования необходимо обеспечить постоянную подачу смеси в бункер при постепенном поднятии и осаживании бетонолитной трубы.