Что такое оптическое излучение
Что такое оптическое излучение
Оптическое излучение охватывает диапазон длин волн от 100 нм до 1 мм спектра электромагнитного излучения.
Следует учитывать, что в отношении пределов спектрального диапазона, нет четкого разделения, которое обязательно только для определенных разделов прикладной оптики.
Измерение оптического излучения, например, может производиться в радиометрии, фотометрии, фотобиологии или физиологии растений, с соответствующими данным разделам измерительными величинами.
Определения фотометрических и радиометрических измерительных величин
Фотометрия
Ограничена диапазоном оптического спектра (свет), видимого человеческим глазом. Измеряемые фотометрические величины: световой поток, яркость и сила света. Основной функцией фотометрии является оценка восприятия яркости посредством функции спектральной световой чувствительности глаза — для фотопического (дневного) зрения или, в редких случаях, для скотопического (ночного) зрения (DIN 5031). Детекторы излучения для измерения фотометрических величин, должны обеспечивать одну из характеристик спектральной чувствительности.
Световой поток
Мощность светового потока источника света (лампы, светодиода и т.п.). Так как лампы обычно не испускают полностью параллельные световые лучи, измерение светового потока осуществляется с помощью измерительных геометрий (метод ≪интегрирующей сферы≫ или ≪сферы Ульбрихта≫), что позволяет точно определять световой поток, независимо от его геометрического распределения. В большинстве случаев, для измерения полного светового потока используются сферические фотометры Ульбрихта или гониометры.
Сила света
Часть светового потока, излучаемая в одном определенном направлении. Сила света является важной величиной для определения эффективности и качества светового оборудования. Измерение осуществляется детектором с ограниченной областью сектора обзора, который устанавливается на расстоянии, позволяющем рассматривать световой источник, как точечный источник света.
Яркость
Ощущение яркости, передаваемое освещенной или светящейся поверхностью глазу. Во многих случаях яркость обеспечивает значительно лучшую информацию относительно качества света, чем освещенность. Для измерения яркости используются измерительные головки (яркомеры) с определенным углом поля зрения.
Освещённость
Световой поток от одного или нескольких световых источников, падающий на определенную поверхность горизонтально или вертикально. В случае непараллельного падения светового потока к поверхности (что является типичным случаем в практической фотометрии), необходимо использование косинусного рассеивателя в качестве измерительной геометрии.
Радиометрия
Метрологическая оценка оптического излучения с использованием радиометрических величин: потока излучения, силы излучения, энергетической яркости и энергетической освещенности. Основной функцией радиометрии является исследование интенсивности облучения, независимо от длины волны. Это главное отличие между радиометрией и измерительными величинами, используемыми в фотометрии, фотобиологии, физиологии растений и т.д.
Сила излучения
Общая мощность, переносимая излучением.
Интенсивность излучения
Отношение силы излучения, испускаемая источником света в определённом направлении, внутри малого телесного угла, к этому телесному углу. Интенсивность излучения используется для измерения геометрического распределения мощности излучения.
Энергетическая яркость
Отношение силы излучения, испускаемого с бесконечно малой площадки источника и распространяющегося в бесконечно малом телесном угле, к площади проекции этой площадки на плоскость, перпендикулярную направлению распространения и величине телесного угла. Энергетическая яркость используется для анализа и оценки свойств апертурных излучателей. Стерадианные или телескопические адаптеры могут использоваться как геометрии измерения.
Интенсивность излучения
Отношение силы излучения, падающего на поверхность, к площади этого участка. Для измерения интенсивности излучения очень важно пространственное исследование падающего излучения (определение угла, который образует нормаль к поверхности с направлением на источник).
Сравнение фотометрических и радиометрических величин
Каждая фотометрическая величина соответствует радиометрической величине и содержит одни и те же взаимосвязи между ними. Величины можно разделить по их индексам: V (видимый) и E (энергетический) спектры.
Функция спектральной чувствительности человеческого глаза
Относительная спектральная чувствительность человеческого глаза определяется общим уровнем освещенности в момент наблюдения. Человеческий глаз реагирует на лучистую энергию, длина волны которой лежит в пределах приблизительно от 380 до 760 мкм. Эта реакция не остается постоянной. При высоких уровнях освещенности максимум чувствительности, так же как и вся кривая относительной спектральной чувствительности глаза, сдвигается в желто-зеленую область. При низких уровнях освещенности положение кривой изменяется и тогда ее максимум приходится на сине-зеленую область спектра. Глаз, адаптированный к свету, имеет функцию дневного (фотопического) зрения, а для глаз, адаптированный к темноте — ночного (скотопического) зрения. Подробная характеристика кривой спектральной чувствительности приводится в табличном формате, в стандарте DIN 5031.
Изменения спектральной чувствительности глаза происходят благодаря наличию в ретине двух типов светочувствительных элементов: палочек и колбочек. Колбочки работают главным образом при высоких уровнях освещенности, палочки — при низких уровнях освещенности. Относительная спектральная световая эффективность монохроматического излучения для дневного/фотопического зрения (колбочки, > 10 кд/м2) описывается с помощью функции V(λ), которая является функцией, используемой в большинстве случаев. Световая эффективность для случая ночного/скотопического зрения (палочки,
Другие материалы:
Неудовлетворительное качество воздуха в закрытых помещениях с постоянным присутствием людей (например в офисах) может легко стать причиной усталости, упадка сил, снижения концентрации и даже привести к заболеваниям.
ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ
Найдено 1 изображение:
Различные виды О. и. классифицируют по след, признакам: природа возникновения (тепловое излучение, люминесцентное излучение, см. Люминесценция); степень однородности спектрального состава (монохроматическое, немонохроматическое, см. Монохроматический свет); степень упорядоченности ориентации электрич. и магнитного векторов (естественное, поляризованное линейно, по кругу, эллиптически); степень рассеяния потока излучения (направленное, диффузное, смешанное) и т. д.
Падающий на поверхность к.-л. тела поток О. и. частично отражается (см. Отражение света), частично проходит через тело и частично поглощается в нём (см. Поглощение света). Поглощённая часть энергии О. и. преобразуется гл. обр. в тепло, повышая темп-ру тела. Однако возможны и другие виды преобразования энергии О. и.- фотоэффект (фотоэлектронная эмиссия), фотолюминесценция, фотохимич. превращения (см. Фотохимия) и пр.
О роли О. и. и оптич. методов исследования в науке и технике см. ст. Оптика и лит. при ней. Ю.С.Черняев.
3.15 оптическое излучение (optical radiation): Электромагнитное излучение с длиной волны от 100 до 10000 нм.
3.26 оптическое излучение (optical radiation): Электромагнитное излучение на длинах волн между 100 нм и 1 мм. Ультрафиолетовое излучение в области длин волн меньше 180 нм (называемое вакуумным УФ) полностью поглощается кислородом воздуха. В этом стандарте диапазон длин волн оптического излучения ограничен с меньшей стороны излучением с длиной волн 180 нм.
2. Оптическое излучение
Примечание. В указанном диапазоне электромагнитные волны наиболее эффективно изучаются оптическими методами, для которых характерно формирование направленных потоков электромагнитных волн с помощью оптических систем
3.5.4 оптическое излучение (optical radiation): Электромагнитное излучение, длина волны которого находится в интервале от 10 нм до 1 мм.
2. Оптическое излучение
Электромагнитное излучение (фотоны) с длинами волн от 1 нм до 1 мм.
Примечание. Оптическое излучение состоит из:
а) переходной области рентгеновского излучения (диапазон длин волн от 1 до 100 нм);
Оптическое излучение
Раздел физики, в котором изучается свет, носит название оптика.
Также, особенно в теоретической физике, термин свет может иногда выступать просто синонимом термина электромагнитное излучение, независимо от его частоты, особенно когда конкретизация не важна, а хотят, например, использовать более короткое слово.
Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой (или, как говорили ранее, нулевой массой покоя).
Содержание
Характеристики света [ | ]
Одной из субъективных характеристик света, воспринимаемой человеком в виде осознанного зрительного ощущения, является его цвет, который для монохроматического излучения определяется главным образом частотой света, а для сложного излучения — его спектральным составом.
Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.
Скорость света в вакууме равна 299 792 458 м/с (точно).
Свет на границе между средами испытывает преломление и/или отражение. Распространяясь в среде, свет поглощается и рассеивается веществом. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению фазовой скорости света в вакууме к фазовой скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления есть скалярная функция (в общем случае — от времени и координаты). В анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света — оптическая дисперсия — приводит к тому, что свет разных длин волн распространяется в среде с разной скоростью, благодаря чему возможно разложение немонохроматического света (например, белого) в спектр.
Как любая электромагнитная волна, свет может быть поляризованным. У линейно поляризованного света определена плоскость (т. н. плоскость поляризации), в которой происходят колебания электрической составляющей электромагнитной волны. У эллиптически (в частности циркулярно) поляризованного света электрический вектор, в зависимости от направления поляризации, «вращается» по или против часовой стрелки.
Неполяризованный свет является смесью световых волн со случайной поляризацией. Поляризованный свет может быть выделен из неполяризованного пропусканием через поляризатор или отражением/прохождением на границе раздела сред при падении на границу под определённым углом, зависящим от показателей преломления сред (см. угол Брюстера). Некоторые среды могут вращать плоскость поляризации проходящего света, причём угол поворота зависит от концентрации оптически активного вещества, — это явление используется, в частности, в поляриметрическом анализе веществ (например, для измерения концентрации сахара в растворе).
Количественно интенсивность света характеризуют с помощью фотометрических величин нескольких видов. К основным из них относятся энергетические и световые величины. Первые из них характеризуют свет безотносительно к свойствам человеческого зрения. Они выражаются в единицах энергии или мощности, а также производных от них. К энергетическим величинам в частности относятся энергия излучения, поток излучения, сила излучения, энергетическая яркость, энергетическая светимость и облучённость.
Каждой энергетической величине соответствует аналог — световая фотометрическая величина. Световые величины отличаются от энергетических тем, что оценивают свет по его способности вызывать у человека зрительные ощущения. Световыми аналогами перечисленных выше энергетических величин являются световая энергия, световой поток, сила света, яркость, светимость и освещённость.
Учёт световыми величинами зависимости зрительных ощущений от длины волны света приводит к тому, что при одних и тех же значениях, например, энергии, перенесённой зелёным и фиолетовым светом, световая энергия, перенесённая в первом случае, будет существенно выше, чем во втором. Такой результат отражает тот факт, что чувствительность человеческого глаза к зелёному свету выше, чем к фиолетовому.
Скорость света [ | ]
Другой — более точный — способ измерения скорости света применил француз Ипполит Физо в 1849 году. Физо направил луч света в зеркало на расстоянии нескольких километров. Вращающееся зубчатое колесо было помещено на пути светового луча, который проходил от источника к зеркалу и затем возвращался к своему источнику. Физо обнаружил, что при определённой скорости вращения луч будет проходить через один пробел в колесе на пути и следующий разрыв на обратном пути. Зная расстояние до зеркала, число зубьев на колесе, и скорость вращения, Физо удалось вычислить скорость света, — было получено значение в 313 000 000 м/с.
Эффективная скорость света в различных прозрачных веществах, содержащих обычную материю, меньше, чем в вакууме. Например, скорость света в воде составляет около 3/4 от скорости света в вакууме. Снижение скорости света при прохождении вещества, как полагают, происходит не от фактического замедления фотонов, а от их поглощения и переизлучения частицами вещества.
Как крайний пример замедления света, можно сказать, что двум независимым группам физиков удалось полностью «остановить» свет, пропуская его через конденсат Бозе-Эйнштейна на основе рубидия. [8] Тем не менее слово «остановить» в этих экспериментах относится только к свету, хранящемуся в возбуждённых состояниях атомов, а затем повторно излучаемому в произвольное более позднее время, как вынужденное вторым лазерным импульсом излучение. Во времена, когда свет «остановился», он перестал быть светом.
Источники оптического излучения
Источниками оптического излучения (другими словами — источниками света) являются многие естественные объекты, а также искусственно создаваемые приборы, в которых те или иные виды энергии превращаются в энергию электромагнитного излучения с длиной волны от 10 нм до 1 мм.
Когерентное и некогерентное излучение
Лазеры относятся к источникам когерентного оптического излучения. Их спектральная интенсивность очень велика, излучение отличается большой степенью направленности, характеризуется монохроматичностью, то есть длина волны у такого излучения постоянна.
Подавляющее же большинство источников оптического излучения — это источники некогерентные, излучение которых является результатом наложения друг на друга большого количества электромагнитных волн, испускаемых группой многих элементарных излучателей.
Искусственные источники оптического некогерентного излучения можно классифицировать по виду излучения, по роду энергии, преобразуемой в излучение, по способу преобразования данной энергии в свет, по назначению источника, по принадлежности к той или иной области спектра (инфракрасная, видимая или ультрафиолетовая), по виду конструкции, режиму использования и т. д.
Оптическое излучение имеет свои световые или энергетические характеристики. К фотометрическим характеристикам относятся: поток излучения, световой поток, сила света, яркость, светимость и т. д. Источники сплошного спектра различают по яркостной или цветовой температуре.
Порой важно знать создаваемую источником освещенность, либо какую-нибудь нестандартную характеристику, например такую как поток фотонов. Импульсные источники имеют определенную продолжительность действия и форму импульса излучения.
Источники оптического излучения могут быть тепловыми с равновесно нагретым светящимся телом в конденсированном состоянии, а также люминесцирующими с неравномерно возбужденным телом в любом агрегатном состоянии. Особенная разновидность — плазменные источники, характер излучения у которых зависит от параметров плазмы и спектрального интервала, здесь излучение может быть или тепловым, или люминесцентным.
Тепловые источники оптического излучения отличаются сплошным спектром, их энергетические характеристики подчиняются законам теплового излучения, где главными параметрами выступают температура и коэффициент излучения светящегося тела.
При коэффициенте 1 излучение эквивалентно излучению абсолютно черного тела, близкому к Солнцу с его температурой в 6000 К. Искусственные тепловые источники нагреваются электрическим током либо энергией химической реакции горения.
Пламя горения газообразного, жидкого или твердого горючего вещества характеризуется сплошным спектром излучения с температурой достигающей 3000 К, благодаря наличию раскаленных твердых микрочастиц. Если такие частицы отсутствуют, спектр будет полосатым или линейчатым, свойственным продуктам горения в газообразном состоянии или химическим веществам, намеренно вводимым в пламя с целью проведения спектрального анализа.
Устройство и применение тепловых источников
Пиротехника сигнального или осветительного назначения, такая как ракеты, фейерверки и т. д., содержат спрессованные составы, включающие в себя горючее вещество с окислителем. Источники инфракрасного излучения обычно представляют собой керамические или металлические тела различных размеров и форм, которые нагреваются пламенем либо посредством каталитического сжигания газа.
Для инфракрасной спектроскопии применяют эталонные излучатели в форме стержней, такие как штифт Нернста и глобар, отличающиеся стабильной зависимостью коэффициента излучения от температуры в инфракрасной части спектра.
Метрологические измерения предполагают исследование излучений моделей абсолютно черных тел, у которых равновесное излучение зависит от температуры; такая модель представляет собой нагреваемую до температур до 3000 К полость из тугоплавкого материала определенной формы с небольшим входным отверстием.
Наиболее популярными тепловыми источниками излучения видимого спектра являются сегодня лампы накаливания. Они служат для целей освещения, сигнализации, в проекторах, прожекторах, кроме того выступают эталонами в фотометрии и пирометрии.
На современном рынке представлено более 500 типоразмеров ламп накаливания, начиная от миниатюрных, заканчивая мощными лампами для прожекторов. Тело накала, как правило, изготавливается в виде нити или спирали из вольфрама, и заключено в стеклянную колбу, заполненную либо инертным газом, либо вакуумом. Срок службы такой лампы обычно заканчивается перегоранием тела накала.
Лампы накаливания бывают галогенными, тогда колба заполняется ксеноном с добавлением йода или летучих соединений брома, обеспечивающих обратный перенос испаряющегося вольфрама с колбы — обратно на тело накала. Такие лампы способны служить до 2000 часов.
Вольфрамовая нить установлена здесь внутри кварцевой трубки, разогреваемой с целью поддержания галогенного цикла. Данные лампы работают в термографии и ксерографии, также их можно встретить практически везде, где служат обычные лампы накаливания.
У электродосветных ламп источником оптического излучения выступает электрод, а точнее — раскаленная область катода при дуговом разряде в наполненной аргоном колбе лампы или на открытом воздухе.
В люминесцирующих источниках оптического излучения, потоком фотонов, электронов или других частиц, либо прямым действием электрического поля, возбуждаются газы или люминофоры, становящиеся в данных обстоятельствах источниками света. Спектр излучения и оптические параметры определяются свойствами люминофоров, а также энергией воздействия возбуждения, напряженностью электрического поля и т. д.
Один из наиболее распространенных видов люминесценции — фотолюминесценция, при которой спектр излучения первичного источника преобразуется в видимый. Ультрафиолетовое излучение разряда падает на слой люминофора, а люминофор в данных условиях излучает видимый свет и ближний ультрафиолет.
Энергосберегающие лампы — это как раз компактные люминесцентные лампы на базе данного эффекта. Подобная лампа мощностью 20 Вт дает световой поток равный световому потоку от лампы накаливания мощностью 100 Вт.
Экраны с электронно-лучевыми трубками относятся к катодолюминесцентным источникам оптического излучения. Экран покрытый люминофором возбуждается пучком летящих к нему электронов.
В светодиодах используется принцип инжекционной электролюминесценции на полупроводниках. Данные источники оптического излучения изготавливаются в виде дискретных изделий с оптическими элементами. Они применяются в индикации, сигнализации, освещении.
Оптическое излучение при радиолюминесценции возбуждается действием распадающихся изотопов.
Хемилюминесценция — превращение в свет энергии химических реакций (см. также виды люминесценции).
Вспышки света в сцинтилляторах, возбуждаемые быстрыми частицами, переходное излучение, а также излучение Вавилова-Черенкова, используют для выявления движущихся заряженных частиц.
Плазменные источники оптического излучения отличаются линейчатым или сплошным спектром, а также энергетическими характеристиками, зависящими от температуры и давления плазмы, возникающей в электрическом разряде или при ином способе получения плазмы.
Параметры излучения варьируются в большом диапазоне в зависимости от подводимой мощности и состава вещества (см. также газоразрядные лампы, плазма). Параметры ограничиваются этой мощностью и стойкостью материалов. Импульсные источники плазмы обладают более высокими параметрами нежели непрерывные.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Оптическое излучение
Страницы работы
Содержание работы
1. ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ
1.1. Свойства оптического излучения и способы его описания
Оптическое излучение – один из видов электромагнитных колебаний (рис. 1.1) – занимает на шкале длин волн интервал, охватывающий пять порядков изменения λ: от λmin = 10 –2 мкм до λmax = 10 3 мкм. Оптический диапазон включает ультрафиолетовое излучение (10 –2 …0,38 мкм), видимое излучение (0,38…0,76 мкм) и инфракрасное излучение (0,76…10 3 мкм). Указанные границы являются примерными, резкого изменения свойств оптического излучения на границах не происходит.
Рис. 1.1. Шкала длин волн электромагнитных колебаний
Коротковолновая часть оптического диапазона (УФ-излучение) обладает ярко выраженным селективным характером воздействия на объекты, в первую очередь биологические. Ультрафиолет обладает бактерицидными (обеззараживающими), эритемными (загар, пигментация кожи), фотохимическими, фотобиологическими и фотоэлектрическими свойствами. Оптическое излучение, воспринимаемое человеческим глазом и сосредоточенное в области длин волн 0,38…0,76 (0,78) мкм или частот (4,0…7,5)10 14 Гц, называют видимым или световым излучением, или просто светом. Видимая область составляет малую часть оптического диапазона, порядка 0,05 %, но наиболее значима для человека. Длинноволновая, инфракрасная, часть оптического диапазона (ИК-излучение) делится на три зоны: ближнюю (0,76…3 мкм), среднюю (3…20 мкм) и дальнюю (20…10 3 мкм) ИК-области. ИК-излучение обладает в основном коллективным, тепловым характером воздействия на среды и используется для обогрева, в оптической связи, тепловидения, спектроскопии, биологии и медицине.
Существует три способа описания оптического излучения: волновой, корпускулярный (квантовый) и лучевой. В рамках классического, волнового подхода оптическое излучение представляется электромагнитными волнами, векторы напряженности электрического Е и магнитного Н полей и направления распространения волн которых взаимно ортогональны. Напряженность электрического поля оптической волны описывается гармонической пространственно-временной функцией
где Т – период колебаний; λ – длина волны; z – координата направления распространения; φ – начальная фаза; ω = 2πν – круговая частота (ν = 1/ Т – циклическая частота); k = 2π /λ – волновое число.
Скорость υ распространения излучения определяется диэлектрической ε и магнитной μ проницаемостями среды. Для оптических немагнитных сред относительная магнитная проницаемость μr = 1. Тогда для скорости получим υ , где n – показатель преломления среды, определяемый относительной диэлектрической εr проницаемостью. Чем больше n, тем медленнее распространяется излучение в среде. Длина волны излучения зависит от скорости υ ее распространения и периода или частоты ν колебаний: λ = υT = υ/ν. При распространении оптического излучения в вакууме, а в первом приближении и в воздушной среде (nв = n0 = 1), длина волны и частота колебаний связаны обратным соотношением λ = с /ν через скорость света. Следует понимать, что при распространении излучения период колебаний и их частота сохраняются неизменными. В среде с показателем преломления n > 1 будет изменяться только длина волны оптического излучения, частота же колебаний останется прежней.
Процесс переноса электромагнитной энергии характеризуется вектором Пойтинга . Количество энергии, переносимой в единицу времени через единицу нормальной поверхности, определяется модулем вектора Пойтинга
[Дж/(м 2 · с)]. В приведенное выражение входит мгновенное значение Е оптической волны. Когда говорят об оптическом излучении, то характерной длиной волны часто считают λ = 1 мкм = 10 –6 м. Следовательно, напряженность электрического поля такой оптической волны изменяется с частотой ν = с/λ = 3 · 10 14 Гц. На практике при столь высоких частотах колебаний измерительные приборы будут регистрировать среднее значение параметра. С учетом гармонического характера изменения Е и квадратичной зависимости модуля вектора Пойтинга от напряженности электрического поля для его среднего значения можно получить
[Вт/м 2 ].