Что такое ордината точки

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Обычно абсцисса относится к горизонтальной оси ( x ), а ордината относится к вертикальной оси ( y ) стандартного двухмерного графика.

Абсциссой точки является подписанный мерой его проекции на первичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).

Ордината точки является подписанный мерой его проекции на вторичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).

СОДЕРЖАНИЕ

Этимология

В своей работе 1892 года « Vorlesungen über die Geschichte der Mathematik»Лекции по истории математики »), том 2, немецкий историк математики Мориц Кантор пишет:

Gleichwohl ist durch [Stefano degli Angeli] vermuthlich ein Wort in den Mathematischen Sprachschatz eingeführt worden, welches gerade in der analytischen Geometrie sich als zukunftsreich bewährt hat. […] Wir kennen keine ältere Benutzung des Wortes Abscisse in lateinischen Originalschriften. Vielleicht Kommt Дас Сусло в Uebersetzungen дер Apollonischen Kegelschnitte VOR, WO Buch I Satz 20 из ἀποτεμνομέναις фильеры Rede ист, wofür ES Kaum Ein entsprechenderes lateinisches Сусло ALS абсцисса Гебен möchte.

Использование слова «ордината» связано с латинским выражением «linea ordinata Applicata» или «параллельная линия».

В параметрических уравнениях

Источник

График линейной функции, его свойства и формулы

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

ФункцияКоэффициент «k»Коэффициент «b»
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Свойства линейной функции

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Источник

Ось ординат

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

В прямоугольной системе координат ось Y’Y называется «осью ординат».

При построении графиков функций, ось ординат обычно используется как область значений функции.

См. также

Смотреть что такое «Ось ординат» в других словарях:

ось ординат — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Y axisY line … Справочник технического переводчика

ось ординат — ordinačių ašis statusas T sritis automatika atitikmenys: angl. ordinate axis vok. Ordinatenachse, f rus. ординатная ось, f; ось ординат, f pranc. axe d ordonnées, m … Automatikos terminų žodynas

ось ординат — ordinačių ašis statusas T sritis fizika atitikmenys: angl. ordinate axis vok. Ordinatenachse, f rus. ось ординат, f pranc. axe d’ordonnées, m … Fizikos terminų žodynas

Ось (значения) — Ось (слово «ось» происходит от древнерусского «ость» долгий усик на плевеле каждого зерна колосовых растений или волос в пушном товаре) понятие некой центральной прямой, в том числе воображаемой прямой (линии): В технике:… … Википедия

ОСЬ — (1) в прикладной механике стержень, опирающийся на опоры и поддерживающий вращающиеся части машин (колёса вагонов) или механизмов (зубчатые колёса часов). В отличие от (см.) О. не передаёт полезного крутящего момента (см. (5)), а работает в… … Большая политехническая энциклопедия

Ось — У этого термина существуют и другие значения, см. Ось (значения). Ось (слово «ось» происходит от праславянской формы). В настоящее время означает серединную линию … Википедия

ординатная ось — ordinačių ašis statusas T sritis automatika atitikmenys: angl. ordinate axis vok. Ordinatenachse, f rus. ординатная ось, f; ось ординат, f pranc. axe d ordonnées, m … Automatikos terminų žodynas

Ordinate axis — Ось ординат … Краткий толковый словарь по полиграфии

Y-axis — Ось ординат, игреков … Краткий толковый словарь по полиграфии

определение — 2.7 определение: Процесс выполнения серии операций, регламентированных в документе на метод испытаний, в результате выполнения которых получают единичное значение. Источник … Словарь-справочник терминов нормативно-технической документации

Источник

ОРДИНАТА

— одна из декартовых координат точки.

Смотреть что такое «ОРДИНАТА» в других словарях:

Ордината — Когда данные изображаются в виде графика, ордината соответствует информации, содержащейся на вертикальной оси, или оси «У». При экспериментальных исследованиях на этой оси размещаются значения зависимой переменной. Психология. А Я. Словарь… … Большая психологическая энциклопедия

ОРДИНАТА — (от лат. ordinatus расположенный в порядке) одна из декартовых координат точки, обычно вторая, обозначаемая буквой y … Большой Энциклопедический словарь

ОРДИНАТА — ОРДИНАТА, ординаты, жен. (лат. ordinata расположенная на равных расстояниях) (мат.). В системе координат аналитической геометрии перпендикуляр на плоскости, опущенный из точки на ось абсцисс. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ордината — сущ., кол во синонимов: 1 • координата (4) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

ордината — Разность долгот начала и конца профиля, измеренная на данной широте [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN ordinatedeparture … Справочник технического переводчика

ордината — В картографии координата, отсчитываемая по направлению, перпендикулярному осевому меридиану … Словарь по географии

ОРДИНАТА — одно из двух (трёх) чисел, определяющих положение точки на плоскости (в пространстве) относительно прямоугольной системы координат … Большая политехническая энциклопедия

Ордината — Рис. 1 Ординатой (от лат. ordinatus расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямо … Википедия

ордината — (лат. ordinatus упорядоченный, расставленный в известном порядке) ееом. одно из двух (трех) чисел, определяющих положение точки на плоскости (в пространстве) относительно прямоугольной системы координат. Новый словарь иностранных слов. by EdwART … Словарь иностранных слов русского языка

ордината — ы; ж. [от лат. ordinatus упорядоченный, назначенный] Матем. Величина, определяющая положение некоторой точки на плоскости или в пространстве по оси Y в прямоугольной системе координат (ср. абсцисса, ордината). * * * ордината (от лат. ordinatus … … Энциклопедический словарь

ордината — ordinatė statusas T sritis fizika atitikmenys: angl. ordinate vok. Ordinate, f rus. ордината, f pranc. ordonnée, f … Fizikos terminų žodynas

Источник

Высшая математика. Шпаргалка

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

Оглавление

Приведённый ознакомительный фрагмент книги Высшая математика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.

1. Основные понятия. Системы координат. Прямые линии и их взаимное расположение

Координата точки — это величина, определяющая положение данной точки на плоскости, на прямой или кривой линии или в пространстве. Значение координаты зависит от выбора начальной точки, от выбора положительного направления и от выбора единицы масштаба.

Прямоугольная система координат состоит из двух взаимно перпендикулярных прямых — осей, точка их пересечения — начало координат О, ось ОХось абсцисс, ось ОYось ординат. На осях выбираются масштаб и положительное направление.

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Положение точки М определяется двумя координатами: абсциссой х и ординатой у. Записывается так: М(х, у). Оси координат образуют четыре координатных угла I, II, III, IV. Если точка находится в I координатном угле (квадранте), то и абсцисса, и ордината ее положительные, если — во II квадранте, то абсцисса отрицательна, а ордината положительна, если в — III квадранте, и абсцисса, и ордината отрицательны, если — в IV квадранте, положительна абсцисса, а ордината отрицательна. У точки, лежащей на оси ординат, абсцисса равна нулю, и наоборот, если точка лежит на оси абсцисс, то ее ордината равна нулю.

Косоугольной системой координат аналогична прямоугольной, только оси координат пересекаются под углом не равным прямому. Прямоугольная и косоугольная системы относятся к декартовой системе координат.

Полярная система координат состоит из полюса О и полярной оси ОХ, проведенной из полюса. Положение точки определяется полярным радиусом ρ (отрезок ОМ) и полярным углом φ. Для полярного угла берется его главное значение (от — π до π). Числа ρ, φ называются полярными координатами точки М.

Связь между координатами точки в прямоугольной и полярной системах координат: x = r cosφ, y = r sinφ или:

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Что такое ордината точки. Смотреть фото Что такое ордината точки. Смотреть картинку Что такое ордината точки. Картинка про Что такое ордината точки. Фото Что такое ордината точки

Общее уравнение прямой линии (система координат прямоугольная): Ах + Ву + С = 0 (А и В одновременно не равны нулю).

Если В не равно нулю, то уравнение прямой: у = ах + b (здесь а = — А / В, b = — С / В). Здесь а есть тангенс угла наклона прямой к положительному направлению оси абсцисс, b равно длине отрезка от начала координат до точки пересечения рассматриваемой прямой с осью ординат. Уравнение прямой, параллельной оси абсцисс: у = b, уравнение оси абсцисс: у = 0; уравнение прямой, параллельной оси ординат: х = с, уравнение оси ординат: х = 0.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *