Что такое ось z на игровом руле
Факторы, влияющие на ресурс игровых рулей
Во всех тестах игровых рулей, каких в сети сотни, тщательно обходят вопрос ресурса игровых рулей и педалей. Казалось бы — покупателю стоит рассказать как долго проработает его покупка, каков ресурс устройства. Но нет, нигде вы такой информации не найдете.
В этой статье я хочу прояснить, какие конструктивные элементы рулей и педалей влияют на срок эксплуатации игровых рулей и педалей.
Во второй части мы рассмотрим с точки зрения ресурса игровой руль Gametrix Viper.
Главный тезис, из которого я исходил при написании этой статьи формулируется так: «Покупатель игрового устройства хочет, чтобы оно служило ему как можно дольше». Если вы согласны со мной, приглашаю оценить этот материал. Если же вы из тех, кто готов менять девайсы раз в месяц — эта статья не для вас.
ДАТЧИКИ
Тут глубокоуважаемый Boomburum прояснил сущность надежности датчиков рулей одной емкой фразой: «все, что трется, рано или поздно выйдет из строя» .
Если мы измеряем угол отклонения руля или педалей при помощи ПОТЕНЦИОМЕТРА, устройства, построенного на ТРЕНИИ (картинка ниже беззастенчиво стянута у Boomburum-а), то можно с математической точностью предсказать, сколько проработает тот или иной руль или педали
Каждый потенциометр имеет четко обозначенный производителем ресурс. Обычно используются потенциометры с ресурсом от 500 тысяч до миллиона циклов.
Например:
www.ctscorp.com/components/Datasheets/295.pdf
www.ctscorp.com/components/Datasheets/251.pdf
Помня, что игрок в среднем совершает одно движение рулем в секунду, мы получаем срок жизни датчика в руле — 1 000 000 / 60 = 16 666 минут / 60 = 277 часов
Т.е. ресурс руля с таким потенциометром составит 277 часов. Играя по часу в день, гонщик выбросит этот руль через 277 дней, т.е. через 9 месяцев.
Однако (опять же благодаря Boomburum-у) мы знаем, что потенциометр — не единственный способ измерить угол отклонения руля или педалей. Существуют также бесконтактные датчики — оптический энкодер и магнитный резистор.
Ресурс таких датчиков мы можем определить как бесконечный, т.к. в них нет разрушаемых элементов.
ШЕСТЕРНИ РЕДУКТОРА
Очень часто ось вращения руля связывают с датчиком не напрямую, а через шестеренчатый редуктор.
У рулей на потенциометрах это связано с тем, что угол, на который физически можно повернуть вал потенциометра обычно меньше, чем угол вращения баранки. К примеру, вот этот потенциометр имеет максимальный угол вращения 212 градусов. А баранка руля обычно поворачивается на 250-300 градусов. Производитель решает вопрос просто — связывает ось вращения руля с осью потенциометра через простейший редуктор:
Редуктор руля на потенциометре
Диск оптического энкодера Logitech MOMO
Вторая причина применения редукторов в игровых рулях — это реализация системы обратной связи Force Feedback. Система активной обратной связи управляет движениями баранки в соответствии с происходящим в игре, повышая интерактивность. Она реализована при помощи электрического двигателя, который связан с осью рулевого колеса при помощи редуктора.
Система FFB имеет 2 основные задачи — возвращать рулевое колесо в центр и реализовывать силовую реакцию на события в игре. Во время игры пользователь держится за баранку (все в курсе?), а система FFB сопротивляется усилиям, которые прилагает игрок к рулевому колесу. И эти усилия бывают весьма велики. Все нагрузки ложатся на шестерни редуктора, а т.к. шестерни сделаны из пластика, их ресурс определяется его качеством.
Как пример не лучшего решения конструкции редуктора можно привести руль для приставки XBOX 360 Microsoft Wireless Racing Wheel. Цитирую человека, который постоянно использует эти рули на выставках для демонстрации игр: «Заметил, что из них перед смертью начинает сыпаться белый порошок. Мы чтобы продлить срок их службы, начали на выставках отключать Force Feedback». Типичная картина разрушения шестерен редуктора (на фото редуктор нового руля)
Какую ошибку допустили разработчики этого редуктора? Средняя шестерня редуктора в 2 раза уже ведущей и ведомой шестерни. Естественно, что ее зубья не выдерживают нагрузок, которые спокойно переносят две другие шестерни.
UPD Товарищ ZUZ ниже дал весьма грамотный комментарий по этому вопросу:
1) на промежуточном колесе и нагрузки-то будут в разы меньше, чем на «большом», а точнее в K=m_колеса1/N_колеса2 (количество зубъев в большом и среднем колесах соответственно)
2) колесо на двигателе сделано больше чем примыкающее промежуточное, потому что оно подвержено износу сильнее (больше оборотов) и делается из более износостойкого материала и износу соответственно из ни двоих подвергается большее по диаметру, и по этому оно уже, чтобы не нем не появилось «канавки» шириной в неизнашиваемое колесо широной
Однако, надо отметить, что разрушение редуктора — довольно редкое явление. Скажем, в приведенном выше примере редуктор разрушался из-за того, что руль эксплуатировался в очень жестком выставочном режиме, для чего он изначально не предназначен. Поэтому когда мы говорим о ресурсе редуктора, мы имеем ввиду время, через которое люфты на рулевом колесе, связанные с износом шестерен и осей, на которых они вращаются, станут неприемлемыми для нормальной игры. Следствием появления люфтов является возникновение мертвых зон, которые ухудшают точность управления.
ОСИ ВРАЩЕНИЯ
В игровых рулях много деталей, поворачивающихся вокруг оси. Вращается рулевое колесо, вращаются педали, вращаются шестерни редуктора. Человечество давно придумало способ увеличения ресурса осей вращающихся деталей, применяя подшипники. В условиях эксплуатации игровых рулей применение подшипников делает ресурс осей практически вечным. Однако на рынке есть всего 2 модели, где оси рулевого колеса и шестерен редуктора установлены на подшипники — это Logitech G25 и G27. Все остальные используют т.н. «подшипники скольжения» разного уровня качества сопряжения деталей. Обычно применяется пара «стальная ось/пластиковая деталь» или «пластиковая ось/пластиковая деталь» или и то и другое вместе.
Вот пример редуктора дерьмового бюджетного руля с FFB:
Центральный пластиковый шток вращается в пластиковой детали, шестерни — на стальных осях. Это типичный пример «как делать не надо». Многоступенчатость редуктора в данном случае приводит к появлению люфтов уже и в новом изделии, а в процессе эксплуатации люфт будет быстро увеличиваться, т.к. люфт каждой из осей будет «суммироваться» в редукторе.
При оценке ресурса осей вращения мы также говорим не о разрушении, а о времени, через которое люфты станут неприемлемыми для нормальной игры.
В приведенном примере люфты становятся неприемлемыми быстро — в конструкции слишком много мест, где возникают и увеличиваются люфты.
Мы рассмотрели основные факторы, определяющие ресурс игрового руля. В следующей статье мы рассмотрим руль Gametrix Viper с точки зрения его надежности по этим 3-м пунктам.
PS
Мы разрабатываем видеоролик, в котором постараемся показать внутреннее устройство игровых рулей и педалей.
Ниже фрагменты из этого ролика.
Потенциометр, его устройство и ресурс 47 мб:
Причины появления мертвых зон, люфты редуктора (в эпизоде допущено несколько серьезных ошибок, в частности, не правильно подвязаны графики работы педалей, прошу учесть, что это далеко не окончательная версия) 50 мб:
Настройка руля и педалей для популярных игр
Мировая индустрия компьютерных приложений развивается семимильными шагами. Главная задача разработчиков — максимально приблизить игровой процесс к реальности, и у многих это отлично получается: современные видеоигры действительно захватывают и погружают пользователя с головой в мир виртуальности. Дополнить гамму ощущений от качественно сделанной игры всегда поможет качественное устройство управления. Например, геймпад для спортивных симуляторов, джойстик для авиасимуляторов или руль для всевозможных гонок. Самые технологичные гоночные манипуляторы представляют собой руль с педалями и коробкой передач. В этой статье мы попробуем разобраться, как настроить руль с педалями на компьютере, чтобы комфортно играть в любимые симуляторы.
Установка оборудования
Первым этапом работы с новым девайсом, будь то джойстик, принтер или любой другой пример, является установка программного обеспечения. Запускаем диск, который идёт в комплекте с девайсом, и по шагам, предложенным мастером установки, устанавливаем драйвер. А также выполнить установку нового оборудования можно из панели управления. Для этого в «Панели управления» находим «Установку оборудования», далее выбираем наше устройство из списка и кликнем «Далее». Затем укажем путь к установочному файлу и нажмём «ОК». Установка выполнится автоматически.
Если у вас отсутствует программное обеспечение, его следует загрузить на сайте разработчика и установить драйверы через панель управления либо любым другим способом.
После установки драйверов подключаем наше устройство к компьютеру. Как правило, руль подключается с помощью USB-кабеля.
Чтобы удостовериться, что руль нормально работает, откройте «Панель управления», выберите «Игровые устройства» и убедитесь, что в пункте «Состояние» стоит подпись «О/С». Далее, кликаем правой клавишей мышки на «О/С», заходим в «Свойства» и тестируем работоспособность педалей, руля, кнопок и переключателей: при их задействовании на экране всё должно корректно отображаться.
Параметры игровых устройств управления
Открываем гоночный симулятор, находим настройки управления и выставляем наш манипулятор как основной тип управления. Там же в настройках управления подгоняем чувствительность руля, градус поворота, силу отдачи и другие параметры по собственным ощущениям. Настроить руль идеально с первого раза не получится — настройки необходимо тестировать многократно в процессе игры, но результат обязательно окупит затраченные усилия.
Если вас не устраивает работа устройства, а в игровых настройках нельзя исправить эту проблему, то можно откалибровать манипулятор с помощью встроенной утилиты операционной системы Windows. Для этого нужно выбрать пункт «Оборудование и звук» в панели управления, затем открыть «Устройства и принтеры», в появившемся списке найти наш манипулятор и вызвать контекстное меню нажатием правой кнопки мыши. В открывшемся меню выбираем «Параметры» и «Откалибровать». Открывается окно настройщика оборудования, в котором можно скорректировать необходимые свойства руля, педалей и кнопок.
Учебный автосимулятор для компьютера
Для некоторых устройств выпускаются дополнительные утилиты, облегчающие настройку для разных игр. Например, для рулей семейства Logitech разработана программа Logitech Profile, которая позволяет создавать и настраивать профиль для каждой игры. Если вы используете эту утилиту, вам не придётся копаться в опциях игры — при запуске настройки вашего профиля включаются автоматически.
Настройка рулей для популярных игр
Отдельной главой выделим настройку рулей для некоторых популярных компьютерных игр. В принципе, настройка рулей производится одинаково для всех типов, согласно вышеизложенной инструкции, однако в некоторых играх появляются проблемы, поэтому остановимся на некоторых особенностях настройки рулей.
Особенности настройки руля для симулятора Crew
У многих пользователей возникает вопрос, как настроить манипулятор для игры в The Crew, из-за таких проблем:
Исходя из опыта пользователей и отзывов в просторах интернета, решить эти проблемы поможет программа Logitech Profile. Нужно создать профиль для Crew, и в его свойствах снять флажок напротив строки «Allow game to adjust settings». Это позволит программе Logitech Profile отключить внутриигровые настройки Crew и использовать только ваш настроенный профиль.
Дополнительные настройки эффектов в программе Logitech Profile
Далее, лучше выставить «Предел» и «Чувствительность» на максимальное значение и подобрать оптимальное значение линейности под вашу манеру вождения.
Особенности настройки руля для игры GTA
Многие игроманы испытывают проблемы при подключении гоночного манипулятора для игры в разные версии ГТА: ГТА 4, ГТА 5, ГТА Сан-Франциско, ГТА Сан-Андреас. Основная проблема состоит в том, что сам руль подключается, а педали в игре не работают.
Это происходит из-за того, что игра Grand Theft Auto не является как таковым гоночным симулятором, поэтому разработана именно для игры на компьютерной клавиатуре или консольном геймпаде. Сразу обрадую читателей: из этой ситуации есть выход, однако давайте всё по порядку.
Метод 1. Пробуем настроить педали через Logitech Profiler
Запускаем установленный Logitech Profiler, создаём профиль для игры в ГТА и в настройках указываем назначение клавиш: для педали акселератора указываем стрелку вверх на клавиатуре, для педали тормоза стрелку вниз. Сохраняем настройки и запускаем игру. Если игра всё равно не реагирует на нажатие педалей, переходим к методу №2.
Окно программы Logitech Profiler
Метод 2. Настраиваем педали в ГТА с помощью специальной программы
Чтобы синхронизировать руль с педалями для игры ГТА разработана специальная программа San Andreas Advanced Control. Её можно скачать с сайта http://www.thegtaplace.com.
Окно программы San Andreas Advanced Control
San Andreas Advanced Control
Скачиваем программу и устанавливаем по шагам, предложенным Мастером установки. После установки открываем, выбираем в опциях наш манипулятор и выполняем настройку руля и педалей для игры.
Заключение
Игровые рули позволяют нам получить максимум ощущений от виртуальных игр. Если мы настраиваем гоночный симулятор, то он, как правило, поддерживает подключение руля и всю настройку можно выполнить в самой игре. Настройка игрового руля — дело щепетильное и требует много свободного времени, ведь только на практике можно определить правильные параметры. Если же мы подключаем руль в играх, не приспособленных к таким манипуляциям, то на помощь придут специальные программы, позволяющие обмануть систему.
Игровые рули и джойстики – технологии XXI века в игровых устройствах
Статья писалась для журнала «Компьютер билд» и потому текст сознательно упрощен. Журнал статью не принял, вот публикую тут.
XX век был веком аналоговых технологий. Радио, телевидение, телефония – все было построено на создании в месте передачи электрических аналогов звуковой и видео информации и воссоздании ее на месте приема. Это был век ламп, реле и потенциометров.
Рождение транзистора дало начало веку полупроводников, а полупроводники дали миру цифровые технологии и к веку XXI цифровые технологии все быстрее вытесняют аналоговые из нашей жизни. Не так уж долго осталось жить аналоговому телевидению, аналоговая телефония быстро сдает позиции перед цифровой сотовой связью. Нет ни малейшего сомнения в том, что XXI век будет веком цифровых технологий и полупроводников.
Давайте посмотрим, как отразилась всемирная эволюция технологий на устройствах для управления компьютерными играми.
Рассмотрим 2 больших класса игровых устройств – джойстики и игровые рули. Мы не будем рассматривать внешний вид и эргономику устройств – об этом предостаточно сказано в огромном количестве статей в журналах и сети, а заглянем внутрь и попробуем понять, куда движутся технологии в устройствах лидеров рынка.
Джойстики
По-видимому, джойстики были первыми устройствами для управления компьютерными играми. Первые джойстики были весьма примитивны – фактически это были просто 4 кнопки, собранные в одном корпусе, которые нажимались при отклонении ручки джойстика в ту или иную сторону. Зачастую для подключения таких джойстиков не было даже предусмотрено никакого интерфейса, и контакты устройства просто напрямую подпаивались к кнопкам клавиатуры.
Думаю, многие еще помнят такие джойстики для ZX Spectrum:
Их принято называть «дискретными», т.к. они способны выдавать только значения 0 или 1, вкл/выкл.
С появлением IBM PC появились и первые серьезные авиасимуляторы. К примеру, игра F-19 Stealth Fighter дала «путевку в небо» многим виртуальным пилотам.
Конечно, всплеск интереса к виртуальным полетам не мог пройти мимо производителей игровых устройств.
И вот начали появляться джойстики для IBM PC.
Типичный представитель джойстиков тех лет:
Что интересно – эти модели продаются до сих пор!
В отличие от джойстиков дискретных, эти джойстики были АНАЛОГОВЫМИ. Теперь, отклоняя ручку, пользователь получал на выходе не 0 и 1, а диапазон значений от 0 до 255, а внутри обосновались аналоговые датчики – потенциометры. Диапазон значений, которые выдавал датчик игре, был связан с разрядностью контроллера – 8 bit.
Аналоговые оси дали игрокам возможность намного точнее управлять играми, приблизили управление виртуальным самолетом к самолету реальному.
Однако сразу же выявились и первые проблемы. Угол отклонения ручки определяется при помощи потенциометра, закрепленного на оси вращения. Вспоминаем школьный курс физики – потенциометр построен на трении движка о резистивный слой:
По изменению сопротивления между крайними и центральным выводом и определяется угол, на который отклонена ручка джойстика.
Т.к. движок скользит по резистивному слою, то срок службы потенциометра ограничен временем, за которое сотрется резистивное вещество. Производители потенциометров честно предупреждают об этом, указывая в характеристиках такой параметр, как «количество циклов», которое прослужит датчик, грубо говоря – сколько раз можно его повернуть до того момента, когда он перестанет нормально работать. Для большинства потенциометров, которые применяются в игровых устройствах эта цифра составляет от 500 тыс до миллиона циклов. Кажется, что это немало, однако давайте посчитаем. В среднем игрок совершает 1 движение в секунду, а значит, через 500 тыс секунд игры устройство перестанет нормально работать. А 500 тыс секунд – это всего 138 часов. Т.е. если играть по 1 часу в день, то меньше чем через полгода такой джойстик гарантированно, по всем законам физики должен выйти из строя.
Но производители джойстиков об этой особенности конструкции деликатно умалчивают, ни на одном джойстике вы не увидите надписи «Рассчитан на 500 тыс циклов». Зато есть цифры гарантийного срока – от 6 до 12 месяцев. Гарантийный срок в данном случае четко привязан к ресурсу потенциометра, поэтому в случае с джойстиком он же является и сроком жизни устройства.
Открытие для пользователей оказалось неприятным – играть, так уж играть, и не по часу в день, менять же джойстики раз в полгода накладно. Что делать? Умелые руки наших граждан быстро освоили разборку джойстиков и смазку потенциометров специальными смазками типа WD-40, что позволило сильно продлить ресурс потенциометров.
Со своей стороны производители стали решать проблему, применяя более дорогие потенциометры с большим ресурсом, но было понятно, что это полумеры.
Нужно было искать бесконтактное решение, и оно было предложено в виде оптических датчиков.
Первыми такое решение предложил Microsoft в джойстике Microsoft SideWinder Precision Pro. С появлением оптических сенсоров для мышей, Microsoft попытался применить ту же технологию внутри джойстика, однако решение оказалось не удачным и больше джойстиков с такими датчиками не выпускалось.
Более простым и надежным оказался простой оптический энкодер (как в обычной мышке с шариком):
На таком принципе построен, к примеру, джойстик Cyborg 3D Force Stick:
Применение таких датчиков позволило поднять ресурс джойстиков на новый уровень.
Но такой датчик имеет и недостатки. Минимальный угол поворота оси джойстика равен ширине прорези энкодера, а требования к точности джойстика росли вместе с появлением новых авиасимуляторов, и многим игрокам в «Ил-2 Штурмовик», к примеру, такой точности оказалось совершенно недостаточно. Множество игроков отказались от вечного датчика на оптическом энкодере в пользу более точного на потенциометрах.
Требовался датчик не просто бесконтактный и долговечный, но и точный.
Решение было найдено в магнитных датчиках. С этого момента цифровые полупроводниковые технологии XXI века пришли и в игровые устройства. Со всей уверенностью можно сказать, что магнитные технологии – это будущее датчиков игровых устройств.
Первым массовым устройством на магнитных датчиках Холла стал джойстик Saitek X52
Датчики Холла придуманы для измерения напряженности магнитного поля. Грубо говоря, датчик может точно определять расстояние до постоянного магнита. Таким образом, разместив магниты на ручке джойстика, приближая или удаляя магнит от датчика, можно определить, насколько сместилась ручка. При этом расстояние измеряется с высокой точностью, которая определяется разрядностью контроллера. Контроллер на 10bit позволяет позиционировать джойстик с точностью 1024 отсчета на ось.
Казалось, что решение найдено – получен джойстик на вечных бесконтактных датчиках с высокой точностью позиционирования. Однако уже первые пользователи выяснили неприятную особенность датчиков Холла – данные на выходе изменяются нелинейно, а это приводит к неверному измерению угла отклонения ручки джойстика в средних положениях ручки.
Следующим этапом развития данной технологии стало применение 3D датчиков Холла. Эти датчики определяют не напряженность поля, а направление на источник магнитного поля. Впервые такой датчик был применен в джойстике Thrustmaster T.16000:
Новый датчик бесконтактный и абсолютно линейный. Точность 16 394 отсчета на ось оставляет далеко позади все джойстики, которые выпускались до этого.
К сожалению, разработчики Thrustmaster T.16000 не учли один важный момент – 3D Холл крайне чувствителен к точности перемещения магнита. Т.к. они закрепили его на пластиковой полусфере, то неизбежный износ пластика приводит к тому, что магнит начинает двигаться не по идеальной полусфере, а со «скачками», что приводит к проблемам с точностью позиционирования.
Данную проблему попытался решить Logitech, установивший оси джойстика Logitech Flight System G940 на подшипники.
Теперь магнит гарантированно перемещается по абсолютно правильной траектории, без люфтов и скачков, но непродуманная система обратной связи, реализованная на этой модели отпугнула многих пользователей (не говоря уже о цене в 13 000 рублей).
Радикально решить вопрос точности и долговечности датчиков, а также ресурса механических деталей джойстика решила компания Saitek в модели X65F:
Подведем промежуточный итог.
За последние 20 лет джойстики превратились из примитивных дискретных переключателей в высокотехнологичные устройства, использующие самые современные технологии XXI века. В новых джойстиках применяются самые передовые датчики для измерения углов – магнитные, что позволяет делать устройства с очень большим ресурсом и высочайшей точностью позиционирования.
Сегодня покупателю доступны джойстики со всеми типами датчиков – на потенциометрах, оптических энкодерах, датчиках Холла и 3D Холлах. Возьму на себя смелость утверждать, что достаточно скоро потенциометры и оптика уйдут в прошлое – как только магнитные датчики станут дешевле, а производители учтут ошибки первых устройств на новой технологии.
Игровые рули
Игровые рули родились позже джойстиков. Сначала казалась, что для игр-гонок хватит наличия джойстика, а то и просто клавиатуры, т.к. первые игры-гонки не отличались высоким уровнем реализма.
Однако игр-гонок становилось все больше, физическая модель автомобилей все усложнялась, и многие игроки захотели получить устройство управления приближенное к реальному автомобилю. Так появились первые рули и педали для игр-гонок.
Обычный комплект для игр-гонок состоит из непосредственно руля, педального блока (2, реже 3 педали) и иногда блока коробки передач и ручного тормоза.
Итак, с помощью каких датчиков измеряют угол отклонения рулевого колеса и педалей современные массово продаваемые игровые комплекты для игр-гонок? Их не так много, как в джойстиках.
Первый тип это, конечно же, потенциометр. Подавляющее большинство представленных сегодня на рынке игровых комплектов для игр-гонок выполнены на потенциометрах с 8bit контроллером. Это естественно – производители просто механически перенесли систему измерения углов с джойстика на руль.
Однако устройства эти далеко не равнозначны и основное отличие руля от джойстика – угол поворота. Если в джойстиках он обычно составляет не более 40 градусов, то в рулях минимальный угол это 180 градусов, а нормой считается 250-270 градусов. А если говорить о полной симуляции управления автомобилем, то угол поворота рулевого колеса должен достигать 900 градусов!
Поэтому применение потенциометров принесло в рули еще больше проблем, чем в джойстики.
Про проблему ограниченного ресурса потенциометров мы помним, рули и педали с таким датчиком это «бомба с часовым механизмом» — можно точно сказать, когда она «рванет», т.е. когда руль и педали перестанут нормально работать из-за разрушения резистивного слоя.
Вторая проблема состоит в том, что если джойстик с 8bit контроллером (256 значений на ось) при отклонении ручки на 40 градусов позволяет измерять угол отклонения ручки с точностью 40/256=0,15 градуса, то та же система в руле с углом поворота 250 градусов дает точность 250/256=1 градус. Маловато для точного управления! Повернуть руль на 0,5 градуса уже не получится.
И это еще не все. Большинство недорогих потенциометров работают на углах от 180 до 200-т. А что делать, если руль поворачивается на 250 градусов? Производители пошли по простейшему пути – потенциометр установлен не прямо на оси руля, а подключен к ней через шестерню. Но т.к. такой редуктор требует высокой точности подгонки шестерен, которую довольно сложно обеспечить при массовом производстве недорогих продуктов, то в итоге пользователь получает еще и дополнительный люфт в центральном положении:
Этот люфт приводит к тому, что в центральном положении рулевого колеса есть мертвая зона примерно в 5-8 градусов, в которой руль не работает вообще.
В сумме применение потенциометров в игровых рулях следует признать весьма неудачным решением. Единственное, что оправдывает их применение – низкая цена игрового комплекта.
Второй тип датчиков, которые применяются в игровых рулях, это оптические энкодеры, о которых мы также говорили выше.
Они бесконтактные (а значит надежные), не имеют ограничений на угол поворота, а значит, не создадут проблем ни для поворота на 250, ни даже на 900 градусов.
Казалось бы – вот идеальное решение для руля. Но, к сожалению, все не так просто, как кажется на первый взгляд.
Первая проблема состоит в том, что оптический энкодер не имеет никакого стартового положения. Все, что он умеет – передавать значения вкл/выкл через определенный угол поворота. И как тогда определить, где центральное положение рулевого колеса? Руль на оптическом энкодере требует калибровки при каждом включении.
Для того чтобы система знала, где находится центральное положение, руль надо повернуть в одну сторону до упора, потом в другую сторону до упора, система подсчитает, сколько прорезей прошло перед фотоэлементом, разделит это значение на 2, это и будет центр.
Логично поручить работу по калибровке специальному исполнительному механизму. В результате рули обзавелись собственным электродвигателем, который при каждом включении калибровал руль, вращая его туда-сюда. Наличие электродвигателя также позволило использовать в рулях систему активной обратной связи, т.н. Force Feedback, когда руль реагировал на ситуацию в игре как руль реального автомобиля, пытаясь вырваться из рук игрока при езде по неровной дороге, при потере сцепления колес с асфальтом руль начинает вращаться мягче и т.п.
Следующая проблема оптического энкодера – точность, которой не хватало даже для джойстика с его 40 градусами вращения. Как мы помним, минимальный угол, на который можно повернуть руль, определяется шириной прорези. Чтобы повысить точность можно:
а) сделать прорезь ỳже, а сам диск больше
б) считать, что, например, 10 прорезей = 1 градусу поворота в игре, тогда минимальный угол поворота игрового руля составит 0,1 градуса, что уже вполне достаточно для точного управления.
По первому пути не пошел никто из производителей – большой диск это увеличение габаритов, сужение прорезей – это проблемы с работой фотоэлемента, хотя такое решение позволило бы устанавливать диск с прорезями прямо на ось руля, не потребовался бы никакой редуктор.
Все пошли по второму пути – стали устанавливать небольшой диск с широкими прорезями, но не напрямую на ось руля, а через шестеренчатый редуктор.
Вроде бы проблема точности и долговечности руля была решена, но что делать с педалями? Места в корпусе педалей несравнимо меньше, чем в корпусе руля. Установить в педали оптический диск и редуктор – не тривиальная задача, особенно если учесть борьбу за цену конечного изделия. Дешевыми педали с точным редуктором точно не будут. В результате большинство производителей остановилось на компромиссном варианте – руль на оптике, педали на потенциометрах. В итоге пользователи этих рулей тоже досконально изучили внутреннее устройство своих педалей и потенциометров в них и пишут инструкции другим пользователям, как разбирать потенциометры и смазывать их WD-40.
На сегодня на рынке есть только одна модель – Saitek R660GT, в которой оптические энкодеры установлены и в руле и педалях. Но за это пришлось платить точностью. Рулевое колесо имеет всего 128 отсчетов на 270 градусов вращения, педали – 60 отсчетов на 15 градусов.
Все остальные модели, вплоть до весьма недешевых Logitech G25 и G27, имеют педали на потенциометрах.
Таким образом, применение вроде бы простого оптического датчика повлекло за собой усложнение конструкции руля – потребовался электродвигатель, сложный контроллер, дополнительный блок питания и редуктор, да к тому же мало кому удалось поставить оптику в педали.
Кажется логичным, что решение проблем долговечности и точности руля и педалей лежит, так же как и у джойстиков, в области магнитных датчиков – они и компактные и высокоточные.
Однако напрямую перенести технологии джойстиков в рули оказалось невозможно – датчики Холла, которые применяются в джойстиках, неприменимы в рулях. По весьма банальной причине – они не могут измерять углы больше 45 градусов.
Кажется логичным применить в руле оптический сенсор, а в педалях – датчики Холла, однако сращивание оптических технологий и технологий магнитных в одном устройстве приведет к резкому усложнению контроллера, а он и так не простой, ведь он еще и должен управлять электродвигателем.
Но у каждой проблемы есть решение и оно найдено. Магнитные датчики, способные измерять большие углы, давно созданы и успешно применяются в автомобильной промышленности. Однако применению их в игровых устройствах мешает высокая цена, к примеру, бесконтактный датчик угла поворота HRS100SSAB090 от компании HONEYWELL стоит от 30$, а на руль их надо минимум 3 шт.
Пока решить эту проблему пока смогла только компания Gametrix, которая недавно вышла на российский рынок.
В первой модели, получившей название Gametrix Viper, и на руле и на педалях установлены бесконтактные магнитные датчики, получившие название MaRS. Эти датчики обладают бесконечным ресурсом, т.к. в них нет никаких трущихся частей.
Датчики реализованы на базе магнитных резисторов от компании NXP-Philips, которые давно и успешно применяются в автомобилестроении.
Они позволяют измерять любые углы с высочайшей точностью. К примеру, 12bit контроллер Gametrix Viper позволяет измерять углы поворота рулевого колеса с точностью 0.05 градуса!
Думаю, не будет преувеличением сказать, что и в игровых рулях, как и в джойстиках, будущее за магнитными технологиями.
Подведем итоги.
Прогресс происходит на наших глазах, технологии сменяют друг друга все быстрее и быстрее. На рынке игровых устройств сегодня мы наблюдаем удивительную ситуацию: в магазинах представлены все поколения игровых устройств – от примитивных джойстиков и рулей начала 90-х до устройств на самых совершенных технологиях 21 века.
Надеюсь, эта статья поможет Вам сделать правильный выбор при покупке.
Извините за большие картинки, жать каждую вручную некогда, а как автоматизировать процесс не знаю.
Схемы брал у уважаемого Бумбурума тут. Надеюсь, он меня за это простит.