Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΠΈΠΌΠ΅Ρ
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠ½ΠΎΠ³Π΄Π° Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π·Π°Π³Π»Π°Π²Π½ΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β« P Β».
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ: ΠΌΠΌ, ΡΠΌ, ΠΌ, ΠΊΠΌ ΠΈ Ρ.Π΄.
ΠΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΌΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌ ΠΏΠΈΡΠ°ΡΡ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ ΠΏΠΎΠ΄ Π·Π½Π°ΠΊΠΎΠΌ Β« P Β», ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°Π±ΡΠ²Π°ΡΡ ΡΠ΅ΠΉ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π²Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΠ΅.
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½Ρ ΠΈ ΡΠΈΡΠΈΠ½Ρ, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½Π°Ρ Π½Π° Β« 2 Β».
Π‘ΡΠΎΡΠΎΠ½Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ Π»Π΅ΠΆΠ°Ρ Π΄ΡΡΠ³ ΠΏΡΠΎΡΠΈΠ² Π΄ΡΡΠ³Π° (ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠ΅), ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΈ ΡΠΈΡΠΈΠ½ΠΎΠΉ.
AB = 3 ΡΠΌ, BC = 7 ΡΠΌ
PABCD = (AB + BC) Β· 2
PABCD = (7 + 3) Β· 2 = 10 Β· 2 = 20 (ΡΠΌ)
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° β ΡΡΠΎ Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°, ΡΠΌΠ½ΠΎΠΆΠ΅Π½Π½Π°Ρ Π½Π° Β« 4 Β».
KE = 7 ΡΠΌ
PEKFM = 4 Β· KE
PEKFM = 4 Β· 7 = 28 (ΡΠΌ)
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° (Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°) ΡΠ°ΡΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°Π΄ΠΎ ΠΏΡΠΎΡΡΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ Π΄Π»ΠΈΠ½Ρ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
PABCDE = AB + BC + CD + DE + EA = 3 + 4 + 3 + 2 + 2 = 14 (ΡΠΌ)
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠ°ΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ? ΠΠ°Π³Π»Π°Π²Π½ΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ P. ΠΠΎΠ΄ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ P ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΈΡΠ°ΡΡ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ ΠΏΠΎ Ρ ΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ.
Π ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ? Π ΡΠ΅Ρ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΡΠΎ ΠΈ Π΄Π»ΠΈΠ½Π° β Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡ, ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡ, ΠΌΠ΅ΡΡ, ΡΡΡ, Π΄ΡΠΉΠΌ, Π»ΠΎΠΊΠΎΡΡ ΠΈ Π΄Ρ.
ΠΡΠ»ΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½ ΠΏΠ΅ΡΠ΅Π΄Π°Π½Ρ Π² ΡΠ°Π·Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ, ΠΌΡ Π½Π΅ ΡΠΌΠΎΠΆΠ΅ΠΌ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ. ΠΠ»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΠΎΠ΄Π½Ρ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π€ΠΎΡΠΌΡΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ°ΠΊ ΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Π Π·Π½Π°ΡΠΈΡ, ΡΡΠΎΠ±Ρ Π΅Π³ΠΎ Π½Π°ΠΉΡΠΈ, Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π·Π½Π°ΡΡ Π΄Π»ΠΈΠ½Ρ ΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ, Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠΈΠ³ΡΡ.
Π Π°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ
Π£ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ. Π Π·Π½Π°ΡΠΈΡ, ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ, Ρ. Π΅. Π½Π° 3.
P = 3 β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠ΅ΠΌ ΠΆΠ΅ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ: ΡΠΌΠ½ΠΎΠΆΠΈΠ² Π΄Π»ΠΈΠ½Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΈ ΡΠΎΠΌΠ±Π° Π²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, Π° Π·Π½Π°ΡΠΈΡ, ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ P = 4 β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ.
Π ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ n-ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠ°Ρ: P = n β a, Π³Π΄Π΅ a β Π΄Π»ΠΈΠ½Π° ΡΡΠΎΡΠΎΠ½Ρ, n β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΡΠΎΡΠΎΠ½.
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌ
Π£ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ, Π° Π·Π½Π°ΡΠΈΡ, Π½Π°ΠΉΡΠΈ ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π»Π΅Π³ΠΊΠΎ, Π·Π½Π°Ρ Π΄Π²Π΅ ΡΠΎΡΠ΅Π΄Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ.
P = 2 β (a + b), Π³Π΄Π΅ a β ΠΎΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π°, b β ΡΠΎΡΠ΅Π΄Π½ΡΡ ΡΡΠΎΡΠΎΠ½Π°.
ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ
Π£ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π½Π΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΡΠΎ Π½Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠΎ Ρ Π½Π΅Π΅ Π΅ΡΡΡ Π΄Π»ΠΈΠ½Π°, ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, Π·Π½Π°Ρ ΡΠ°Π΄ΠΈΡΡ. ΠΠ»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΈ Π½Π° Π΄Π²Π° ΡΠ°Π΄ΠΈΡΡΠ° ΠΈΠ»ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΈ Π½Π° Π΄ΠΈΠ°ΠΌΠ΅ΡΡ.
L = d β Ο = 2 β r β Ο, Π³Π΄Π΅ d β Π΄ΠΈΠ°ΠΌΠ΅ΡΡ, r β ΡΠ°Π΄ΠΈΡΡ, Ο β ΡΡΠΎ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΡΡΠ°ΠΆΠ°Π΅Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΊ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΡ, ΠΎΠ½Π° ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°Π²Π½Π° 3,14.
ΠΠΎΠΆΠ½ΠΎ Π²ΡΡΡΠΈΡΡ Π²ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, Π° ΠΌΠΎΠΆΠ½ΠΎ, Π·Π°ΠΏΠΎΠΌΠ½ΠΈΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎ ΡΡΠΌΠΌΠ΅ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½, ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π· ΠΏΡΠΎΡΠ²Π»ΡΡΡ ΡΠΌΠ΅ΠΊΠ°Π»ΠΊΡ ΠΈ Π²ΡΡΠΈΡΠ»ΡΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ, ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡ!
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ
Π Π°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ 40 ΡΠΌ, Π΄Π»ΠΈΠ½Π° Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 6 ΡΠΌ. ΠΠ°ΠΊΡΡ Π΄Π»ΠΈΠ½Ρ Π±ΡΠ΄ΡΡ ΠΈΠΌΠ΅ΡΡ Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ?
ΠΡΠ²Π΅Ρ: Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ ΠΏΠΎ 17 ΡΠΌ.
Π Π°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π²Π΅Π½ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΠΏΡΡΠΈΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ 4 ΡΠΌ. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ β Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠΊΠΎΠ»Π΅ Skysmart!
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ
Π Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ, ΠΊΠ°ΠΊ ΠΎΠ½ ΡΡΠΈΡΠ°Π΅ΡΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅ΡΡ Π΄Π»Ρ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠ°ΡΠΈΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π·Π½Π°Π½ΠΈΠΉ.
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ°
ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ (ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΊΠ²Π°Π΄ΡΠ°ΡΠ°, ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΡΠΎΠΌΠ±Π° ΠΈ Ρ.Π΄.).
ΠΠ»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΡ Π΄Π»ΠΈΠ½Ρ: ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅ΡΡΡ (ΠΌΠΌ), ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡΡ (ΡΠΌ), ΠΌΠ΅ΡΡΡ (ΠΌ), ΠΊΠΈΠ»ΠΎΠΌΠ΅ΡΡΡ (ΠΊΠΌ) ΠΈ Ρ.Π΄.
ΠΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° β ΡΡΠΎ Π»Π°ΡΠΈΠ½ΡΠΊΠ°Ρ Π±ΡΠΊΠ²Π° βPβ, ΠΏΠΎΠ΄ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ ΡΠΎΠΊΡΠ°ΡΠ΅Π½Π½ΠΎΠ΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ ΠΈΠ»ΠΈ Π΅Π΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ:
Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΡ ΡΠΈΠ³ΡΡ
Π€ΠΈΠ³ΡΡΠ° | ΠΠ°Π·Π²Π°Π½ΠΈΠ΅ | ΠΠΎΡΡΠ½Π΅Π½ΠΈΠ΅ | ||||
» data-order=» | ΠΠ²Π°Π΄ΡΠ°Ρ | » data-order=» | ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ | » data-order=» | Π’ΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ | PΠΊΠ²Π°Π΄Ρ. = 5 + 5 + 5 + 5 = 4 β 5 = 20 ΡΠΌ. ΠΡΠΈΠΌΠ΅Ρ 2 PΠΏΡΡΠΌΠΎΡΠ³. = 6 + 8 + 6 + 8 = (6 + 8) β 2 = 28 ΡΠΌ. ΠΡΠΈΠΌΠ΅Ρ 3 P = AB + BC + CD + DE + EH + HA = 5 + 3 + 5 + 4 + 6 + 5 = 28. ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠΌ ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ΅ΡΡΡΠ΅Ρ ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ°Π²Π½Ρ Π²ΡΠ΅ ΡΠ³Π»Ρ. ΠΠ½ΠΈ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡΡΡΡ ΠΏΡΡΠΌΡΠΌΠΈ ΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ 90Β°. ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ β ΡΡΠΎ Π΄Π»ΠΈΠ½Π° Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ±ΡΠ΅ΠΏΡΠΈΠ½ΡΡΠΎΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠ΅ β Π·Π°Π³Π»Π°Π²Π½Π°Ρ Π»Π°ΡΠΈΠ½ΡΠΊΠ°Ρ Π±ΡΠΊΠ²Π° P. ΠΠΎΠ΄ Β«PΒ» ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠΈΡΠ°ΡΡ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠΈΠ³ΡΡΡ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ ΠΏΠΎ Ρ ΠΎΠ΄Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°Π½Ρ Π² ΡΠ°Π·Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ, ΠΌΡ Π½Π΅ ΡΠΌΠΎΠΆΠ΅ΠΌ ΡΠ·Π½Π°ΡΡ ΠΊΠ°ΠΊΠ°Ρ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΠΈΠ³ΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ. ΠΠΎΡΡΠΎΠΌΡ Π΄Π»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΊ ΠΎΠ΄Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. Π ΡΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ: Π€ΠΎΡΠΌΡΠ»Π° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°Π‘ΠΏΠΎΡΠΎΠ± Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ, ΠΎΡΡΠ°Π»ΠΊΠΈΠ²Π°ΡΡΡ ΠΎΡ ΠΈΡΡ ΠΎΠ΄Π½ΡΡ Π΄Π°Π½Π½ΡΡ . ΠΠ°Π»Π΅Π΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΡΡΡΠ΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ. ΠΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π²ΡΠ΅ ΠΈΠ»ΠΈ Π΄Π²Π΅ ΡΠΎΡΠ΅Π΄Π½ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½ΡP = a + b + c + d, Π³Π΄Π΅ a, b, c, d β ΡΡΠΎΡΠΎΠ½Ρ. ΠΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π»ΡΠ±Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄ΡP = 2 * (a + S : a), Π³Π΄Π΅ a β ΡΡΠΎΡΠΎΠ½Π°, S β ΠΏΠ»ΠΎΡΠ°Π΄Ρ. ΠΠ»ΠΎΡΠ°Π΄Ρ β ΡΡΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Π²Π½ΡΡΡΠΈ Π·Π°ΠΌΠΊΠ½ΡΡΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ³ΡΡΡ. ΠΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Π° Π»ΡΠ±Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ β ΡΡΠΎ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠΈΠ³ΡΡΡ. ΠΠΎΠ³Π΄Π° ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΠΎΠ΄Π½Π° Π»ΡΠ±Π°Ρ ΡΡΠΎΡΠΎΠ½Π° ΠΈ ΡΠ°Π΄ΠΈΡΡ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈΠ Π°Π΄ΠΈΡΡ β ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅Π½ΡΡ ΠΈ Π»ΡΠ±ΡΡ ΡΠΎΡΠΊΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠ ΡΠ΅ΠΏΠ΅ΡΡ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ²Π°ΡΡΡΡ! 1. ΠΠ΄Π½Π° ΡΡΠΎΡΠΎΠ½Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° 9 ΡΠΌ, Π° Π΄ΡΡΠ³Π°Ρ Π½Π° 11 ΡΠΌ Π΄Π»ΠΈΠ½Π½Π΅Π΅. ΠΠ°ΠΊ ΡΠ·Π½Π°ΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ?2. ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 60 ΠΌΒ², ΡΠΈΡΠΈΠ½Π° ΡΠ°Π²Π½Π° 15 ΠΌ. Π§Π΅ΠΌΡ ΡΠ°Π²Π΅Π½ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΠΈΠ³ΡΡΡ?Π Π΅ΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΎΡ ΡΠ°ΠΊ: ΠΡΠ²Π΅Ρ β ΡΠ°ΠΊΠΎΠΉ ΠΆΠ΅, 38 ΠΌ. 3. ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΅ΡΠ»ΠΈ Π΅Π³ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Ρ Π² Π΄Π²Π° ΡΠ°Π·Π° Π±ΠΎΠ»ΡΡΠ΅ Π΄Π»ΠΈΠ½Ρ ΡΠ°Π²Π½ΠΎΠΉ 8 ΡΠΌ?ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π΄Π»ΠΈΠ½Ρ Π»ΠΎΠΌΠ°Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, Π½ΡΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ Π΄Π»ΠΈΠ½Ρ Π΅Π΅ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ²-Π·Π²Π΅Π½ΡΠ΅Π². Π ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π±ΡΠΊΠ²ΠΎΠΉ P (ΠΏΡ). ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π°ΠΉΠ΄ΡΠΌ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΡΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ ΠΌΡ ΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° Π½Π΅ Π²ΡΡΡΠΈΠ»ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅. ΠΡ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° β ΡΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½ Π²ΡΠ΅Ρ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½. Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΏΠΎΠ΄ΡΡΠ΅ΡΠ° ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°: (a + b) β’ 2 a β Π΄Π»ΠΈΠ½Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° b β ΡΠΈΡΠΈΠ½Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Π‘ΡΠΌΠΌΠ° Π΄Π»ΠΈΠ½Ρ ΠΈ ΡΠΈΡΠΈΠ½Ρ (a + b) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠΎΠ»ΡΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠΎΠΌ, ΡΡΠΎΠ±Ρ ΠΈΠ· ΠΏΠΎΠ»ΡΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ, Π½ΡΠΆΠ½ΠΎ Π΅Π³ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ Π² 2 ΡΠ°Π·Π°, ΡΠΎ Π΅ΡΡΡ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° 2. ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡΠ° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ 2 ΡΠΌ ΠΈ 6 ΡΠΌ: ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°ΠΠ΅ΡΠΈΠΌΠ΅ΡΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΠΠ΅ΡΠ²ΡΠΉ ΡΠΏΠΎΡΠΎΠ± (ΠΊΠΎΠ³Π΄Π° ΠΌΡ Π΅ΡΠ΅ Π½Π΅ Π·Π½Π°Π΅ΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ): ΠΡΠΎΡΠΎΠΉ ΡΠΏΠΎΡΠΎΠ± (ΠΊΠΎΠ³Π΄Π° ΠΌΡ ΠΈΠ·ΡΡΠΈΠ»ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ): ΠΠΎΠ΄Π΅Π»ΠΈΡΡ Ρ Π΄ΡΡΠ·ΡΡΠΌΠΈ Π² ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ΅ΡΡΡ :
|