Что является результатом репликации
Репликация ДНК
Репликация — это механизм самокопирования и основное свойство наследственного материала, которым выступают молекулы ДНК.
Особенностью ДНК является то, что обычно ее молекулы состоит из двух комплементарных друг другу цепей, образующих двойную спираль. В процессе репликации цепи материнской молекулы ДНК расходятся, и на каждой строится новая комплементарная цепь. В результате из одной двойной спирали образуется две, идентичные исходной. Т. е. из одной молекулы ДНК образуются две, идентичные матричной и между собой.
Таким образом, репликация ДНК происходит полуконсервативным способом, когда каждая дочерняя молекула содержит одну материнскую цепь и одну вновь синтезированную.
У эукариот репликация происходит в S-фазе интерфазы клеточного цикла.
Описанный ниже механизм и основные ферменты характерны для подавляющего большинства организмов. Однако бывают исключения, в основном среди бактерий и вирусов.
Расхождение цепей исходной молекулы ДНК обеспечивает фермент геликаза, или хеликаза, который в определенных местах хромосом разрывает водородные связи между азотистыми основаниями ДНК. Хеликазы перемещаются по ДНК с затратой энергии АТФ.
Чтобы цепочки снова не соединились, они удерживаются на расстоянии друг от друга дестабилизирующими белками. Белки выстраиваются в ряд со стороны пентозо-фосфатного остова цепи. В результате образуются зоны репликации, называемые репликационными вилками.
Репликационные вилки образуются не в любых местах ДНК, а только в точках начала репликации, состоящих из определенной последовательности нуклеотидов (около 300 штук). Такие места распознаются специальными белками, после чего образуется так называемый репликационный глаз, в котором расходятся две цепи ДНК.
Из точки начала репликация может идти как в одном, так и в двух направлениях по длине хромосомы. В последнем случае цепи ДНК расходятся вперед и назад, и из одного репликационного глазка образуются две репликационные вилки.
Репликон — единица репликации ДНК, от точки ее начала и до точки ее окончания.
Поскольку в ДНК цепи спирально закручены относительно друг друга, то разделение их хеликазой вызывает появление дополнительных витков перед репликационной вилкой. Чтобы снять напряжение, молекула ДНК должна была бы проворачиваться вокруг своей оси один раз на каждые 10 пар разошедшихся нуклеодидов, именно столько образуют один виток спирали. В таком случае ДНК бы быстро вращалась с затратой энергии. Но этого не происходит, т. к. природа нашла более эффективный способ справится с возникающим при репликации напряжением спирали.
Фермент топоизомераза разрывает одну из цепей ДНК. Отсоединенный участок проворачивается на 360° вокруг второй целой цепи и снова соединяется со своей цепью. Этим снимается напряжение, т. е. устраняются супервитки.
Каждая отдельная цепь ДНК старой молекулы используется в качестве матрицы для синтеза новой комплементарной себе цепи. Добавление нуклеотидов к растущей дочерней цепи обеспечивает фермент ДНК-полимераза. Существует несколько разновидностей полимераз.
В репликационной вилке к освободившимся водородным связям цепей согласно принципу комплиментарности присоединяются свободные нуклеотиды, находящиеся в нуклеоплазме. Присоединяющиеся нуклеотиды представляют собой дезоксирибонуклеозидтрифосфаты (дНТФ), а конкретно дАТФ, дГТФ, дЦТФ, дТТФ.
После образования водородных связей фермент ДНК-полимераза связывает нуклеотид фосфоэфирной связью с последним нуклеотидом синтезируемой дочерней цепи. При этом отделяется пирофосфат, включающий два остатка фосфорной кислоты, который потом расщепляется на отдельные фосфаты. Реакция отщепления пирофосфата в результате гидролиза энергетически выгодна, так как связь между первым, который уходит в цепь, и вторым фосфатными остатками богата энергией. Эта энергия используется полимеразой.
Полимераза не только удлиняет растущую цепь, но и способна отсоединять ошибочные нуклеотиды, т. е. обладает корректирующей способностью. Если последний нуклеотид, который должен быть присоединен к новой цепи, не комплементарен матричному, то полимераза его удалит.
Поскольку цепи ДНК антипараллельны, а синтез новой цепи возможен только в направлении 5´→3´, то в репликационной вилке дочерние цепи будут синтезироваться в разных направлениях.
На матрице 3´→5´ сборка новой полинуклеотидной последовательности происходит по большей части непрерывно, так как эта цепь синтезируется в направлении 5´→3´. Антипараллельная матрица характеризуется 5´→3´ направлением, поэтому синтез дочерней цепи по ходу движения вилки здесь не возможен. Здесь он был бы 3´→5´, но ДНК-полимера не может присоединять к 5´-концу.
Поэтому синтез на матрице 5´→3´ выполняется небольшими участками — фрагментами Оказаки (названы в честь открывшего их ученого). Каждый фрагмент синтезируется в обратном ходу образования вилки направлении, что обеспечивает соблюдение правила сборки от 5´- к 3´-концу.
После удаления праймеров и застраивания брешей ДНК-полимеразой отдельные участки дочерней цепи ДНК сшиваются между собой ферментом ДНК-лигазой.
Непрерывная сборка идет быстрее, чем фрагментарная. Поэтому одна из дочерних цепей ДНК называется лидирующей, или ведущей, вторая — запаздывающей, или отстающей.
У прокариот репликация протекает быстрее: примерно 1000 нуклеотидов в секунду. В то время как у эукариот только около 100 нуклеотидов. Количество нуклеотидов в каждом фрагменте Оказаки у эукариот составляет примерно до 200, у прокариот — до 2000.
У прокариот кольцевые молекулы ДНК представляют собой один репликон. У эукариот каждая хромосома может содержать множество репликонов. Поэтому синтез начинается в нескольких точках, одновременно или нет.
Ферменты и другие белки репликации действуют совместно, образуя комплекс и двигаясь по ДНК. Всего в процессе участвует около 20 разных белков, здесь были перечислены лишь основные.
РЕПЛИКАЦИЯ
Репликация (позднелат. replicatio повторение; син. редупликация) — процесс биосинтеза молекул дезоксирибонуклеиновых кислот, в результате к-рого из одной молекулы образуются две дочерние, полностью идентичные материнской. Репликация дезоксирибонуклеиновых кислот (см.) обеспечивает передачу полного комплекса наследственной генетической информации от поколения к поколению (см. Наследственность). Свойство молекул ДНК редуплицироваться проявляется и в репродукции хромосом (см.) высших организмов.
Согласно модели, предложенной Дж. Уотсоном и Ф. Криком, молекула ДНК представляет собой двойную спираль, построенную из комплементарных друг другу цепей дезоксирибонуклеотидов. В процессе Репликации водородные связи между парами нуклеотидов разрываются и к ним присоединяются новые, комплементарные соответствующим дезоксирибонуклеотидам дезоксинуклеозидтрифосфаты. Процесс соединения нуклеотидов в полинуклеотидную цепь происходит с отщеплением пирофосфата. Репликация ДНК носит характер полуконсервативного процесса, т. е. каждая дочерняя двойная спираль включает в себя одну материнскую и одну вновь синтезированную полинуклеотидную цепь.
Образованию вилки репликации предшествует взаимодействие с молекулой ДНК особого белка (ДНК-раскручивающего белка), устраняющего суперспиральные витки и локально раскручивающего двойную спираль ДНК. Предполагают, что ДНК-раскручнвающий белок встраивается в дезоксирибозофосфатную цепь. Эта реакция обратима: после высвобождения ДНК-раскручивающего белка спиральная структура ДНК восстанавливается. Локальное расхождение комплементарных цепей ДНК обеспечивают белки-дестабилизаторы двойной спирали ДНК. Присоединяясь к ДНК, белки-дестабилизаторы снижают термостабильность ее молекулы, к-рая приобретает способность плавиться при температуре на 40° ниже обычной температуры плавления.
Рост новой цепи ДНК в вилке репликации катализируется ферментом ДНК-полимеразой (см. Полимеразы). В клетках высших организмов и бактерий обнаружено несколько форм ДНК-полимераз, но Р. генома у эукариотов осуществляется только под действием ДНК-полимеразы а, а у бактерий — ДНК-полимеразы III. Комплементарные цепи двойной спирали ДНК антипараллельны по ориентации углеродных атомов дезоксирибозы (см.). Следовательно, при движении вилки репликации одна дочерняя цепь должна нарастать в направлении 5′ —> 3′, а другая — в направлении 3′ —> 5′. Вместе с тем все ДНК-полимеразы способны присоединять новые нуклеотиды только к З’-гидроксильной группе дезоксирибозы растущей цепи ДНК, тем самым обеспечивая синтез только в направлении 5′ —> 3′, т. е. первым образуется 5′-конец новой цепи. Сама ДНК-полимераза к тому же не способна инициировать синтез новых цепей на одноцепочечной ДНК-матрице. Было установлено, что обе эти трудности преодолеваются путем синтеза на одной цепи коротких полинуклеотидных фрагментов с полярностью 5′ —> 3′ в направлении, противоположном движению вилки репликации (рис. 2). При этом инициацию Р. каждого нового фрагмента ДНК осуществляет фермент РНК-полимераза (так наз. примаза), при участии к-рого на ДНК-матрице синтезируется инициатор (затравка) — короткий участок РНК (так наз. РНК-праймер), к 3′-гидроксильной группе рибозы к-рого ДНК-полимераза начинает присоединять дезоксирибонуклеотиды. Впоследствии РНК-праймер удаляется экзонуклеазой (см. Нуклеазы), а образовавшаяся брешь закрывается ДНК-полимеразой. У Escherichia coli 5′ —> З’-экзонуклеазной активностью обладает ДНК-полимераза I.
Отдельные полинуклеотидные фрагменты сшиваются между собой ферментом ДНК-лигазой (КФ 6.5.1.1; 6.5.1.2). При этом одна из двух цепей ДНК растет непрерывно (ведущая нить), а другая — прерывисто (запаздывающая нить). Фрагменты прерывистого синтеза ДНК называют фрагментами Окадзаки (Оказаки) по имени открывшего их японского ученого Окадзаки (R. Okazaki). У бактерий фрагменты Окадзаки имеют длину ок. 1000 нуклеотидных пар, а их РНК-праймер — 50—200 нуклеотидных пар. У высших организмов фрагменты Окадзаки состоят приблизительно из 150—200 нуклеотидных пар, а их РНК-праймер — из 10—20 пар.
Присоединив очередной нуклеотид к растущей цепи ДНК, ДНК-полимераза «сверяет» его с партнером на цепи-матрице, и в случае несоответствия паре (А — Т или Г — Ц) та же полимераза проявляет 3′ —> 5′-экзонуклеазную активность, удаляя ошибочно присоединенный нуклеотид. Т. о. осуществляется коррекция, обеспечивающая высокую точность процесса Р. молекул ДНК, что определяет сохранность наследственной информации в ряду поколений клеток и организмов.
В клетках, размножающихся путем митоза (см.), и у бактерий репликация ДНК происходит между актами деления клеток; в мейозе (см.) ДНК редуплицируется один раз перед двумя следующими друг за другом делениями, что приводит к редукции (уменьшению) вдвое количества ДНК (как и числа хромосом) на клетку. Этот отрезок интерфазы называют периодом синтеза ДНК или S-периодом.
Репликацияначинается (инициируется) в определенных участках молекулы ДНК (по терминологии Ф. Жакоба — репликаторах), первичная структура к-рых характеризуется высоким содержанием пар А — Т и наличием так наз. обратных повторов (палиндромов). От точки инициации движутся либо одна, либо две вилки репликации (в последнем случае они движутся в противоположные стороны), обеспечивая элонгацию (удлинение) вновь синтезирующихся участков молекулы ДНК. Терминация (окончание) Р. происходит либо при слиянии двух вилок репликации, двигающихся навстречу друг другу, либо в специальных точках терминации Р.
Отрезок молекулы ДНК, реплицирующийся в результате одного акта инициации, называют единицей репликации или реплпконом. В геноме бактерий, как правило, имеется всего один участок инициации Р., связанный с клеточной мембраной. Кольцевая молекула ДНК генома бактерии реплицируется как один репликон. В геноме эукариотов Р. осуществляется полирепликонно, т. е. инициация Р. происходит одновременно во многих точках по длине молекул ДНК. Установлено, что на молекулах ДНК генома эукариотов имеется большое число потенциальных точек инициации Р., расположенных на расстоянии 1—4 мкм друг от друга. В зависимости от того, сколько потенциальных точек инициации вовлечены в Р., может меняться размер репликона. Напр., при репликации ДНК в дробящихся яйцах дрозофилы, где деления клеток следует очень быстро одно за другим, в Р. включается каждая вторая или третья потенциальная точка Р. и размер репликации равен 9—12 мкм; при удвоении ДНК соматических клеток эукариотов в Р. участвует в среднем 1 из 10 или даже из 100 потенциальных точек инициации Р. и размер репликонов увеличивается до 30—300 мкм.
Репликация ДНК вирусов в основном сходна с репликацией ДНК высших животных и бактерий; она осуществляется ферментами клетки хориона. В нек-рых случаях (вирусы герпеса) РНК-затравка обнаруживается в составе вирионной ДНК. У онкогенных ДНК-содержащих вирусов (паповавирусы) ДНК может интегрировать в геном клетки, после чего репликация вирусной ДНК происходит вместе с ДНК клетки.
Репликация большинства РНК-содержащих вирусов осуществляется вирусспецифическими ферментами — РНК-зависимыми РНК-полимеразамн (репликазы), к-рые достраивают комплементарную нить на вирионной РНК-матрице, образуя так наз. репликативные формы РНК.
У онкогенных РНК-содержащих вирусов (см. Ретровирусы) Р. осуществляется ферментом РНК-зависимой ДНК-полимеразой (обратная транскриптаза, ревертаза), к-рый синтезирует ДНК-копию вирусного генома, способного встраиваться в геном клетки (см. Вирусы).
У бактерий и эукариотов, как правило, в каждом цикле деления клеток должна реплицироваться вся ДНК и при этом только один раз. Это значит, что должны существовать регуляторные системы, контролирующие инициацию Р. и отличающие родительские и дочерние молекулы. Механизм такой регуляции пока не ясен.
В определенных случаях (в норме и при патологии) может происходить многократная Репликация всего генома без последующего деления клетки (это приводит к возникновению полиплоидных ядер ) или Р. отдельных частей генома без Р. всего генома, так наз. экстрарепликация (напр., амплификация ДНК рибосомного гена в оогенезе нек-рых животных). Описаны случаи недорепликации части ДНК генома в клетках эукариотов. Это касается только ДНК гетерохроматина, в к-ром нет генов, необходимых для жизнеобеспечения клетки.
Сходство ферментов Репликации и основных процессов, происходящих в вилке репликации, у прокариотов и эукариотов свидетельствует о высокой эволюционной стабильности и жестком генетическом контроле процесса репликации ДНК. Нарушения нормального процесса Репликации влияют на деление и могут привести к гибели клеток.
Библиография: Бостон К. и Самнер Э. Хромосома эукариотической клетки, пер. с англ., с. 248, М., 1981; Корнберг А. Синтез ДНК, пер. с англ., М., 1977; Уотсон Д ж. Молекулярная биология гена, пер. с англ., М., 1978; DNA synthesis, ed. by J. Molineux a. M. Kohiyama, N. Y.— L., 1978; Jacob F., Brenner S. a. Сuzin F. On the regulation of DNA replication in bacteria, Cold Spr. Harb. Symp. quant. Biol., v. 28, p. 329, 1963.
Репликация (биология)
Реплика́ция ДНК — это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками.
Хеликаза, топоизомераза и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.
Цепи молекулы ДНК расходятся и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются новые двуспиральные молекулы ДНК, идентичные родительской молекуле.
Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя (1958 г.). Ранее существовали и две другие модели: «консервативная» — в результате репликации одна молекула ДНК состоит только из родительских цепей, а другая — только из дочерних цепей; «дисперсионная» — все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК).
Ссылки
Полезное
Смотреть что такое «Репликация (биология)» в других словарях:
РЕПЛИКАЦИЯ — (от позднелат. replicatio повторение), редупликация, ауторепликация, процесс самовоспроизведения макромолекул нуклеиновых к т, обеспечивающий точное копирование генетич. информации и передачу её от поколения к поколению. В основе механизма Р.… … Биологический энциклопедический словарь
биология — БИОЛОГИЯ (от греч. bio жизнь и logos слово, учение) совокупность наук о жизни во всем разнообразии проявления ее форм, свойств, связей и отношений на Земле. Впервые термин был предложен одновременно и независимо друг от друга в 1802… … Энциклопедия эпистемологии и философии науки
Репликация ДНК — У этого термина существуют и другие значения, см. Репликация. Схематическое изображение процесса репликации, цифрами отмечены: (1) запаздыв … Википедия
БИОЛОГИЯ — совокупность наук о жизни во всем разнообразии проявления ее форм, свойств, связей и отношений на Земле. Впервые термин был предложен одновременно и независимо друг от друга в 1802 г. выдающимся французским ученым Ж.Б. Ламарком и немецким… … Философия науки: Словарь основных терминов
Репликация — (позднелат. replicatio повторение, от лат. replico обращаюсь назад, повторяю) редупликация, ауторепродукция, аутосинтез, протекающий во всех живых клетках процесс самовоспроизведения (самокопирования) нуклеиновых кислот (См. Нуклеиновые… … Большая советская энциклопедия
МОЛЕКУЛЯРНАЯ БИОЛОГИЯ — изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования структурно функциональной организации генетического аппарата клеток и механизма реализации наследственной информации… … Биологический энциклопедический словарь
Жизненный цикл (биология) — У этого термина существуют и другие значения, см. Жизненный цикл. Схематическое изображение основных типов жизненных циклов с чередованием диплоидной и гапл … Википедия
Экстракт (биология) — Экстракт (клеточный экстракт, бесклеточная система) разрушенные механическим или химическим (осмотический шок) способом клетки, использующиеся для воспроизведения биохимических процессов «в пробирке». Для получения экстрактов используются клетки … Википедия
Клетка (биология) — Клетка элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию,… … Википедия
Репликация ДНК
Расшифровка структуры молекулы ДНК помогла объяснить принцип ее репликации. Репликацией называется процесс удвоения молекул ДНК. Этот процесс лежит в основе воспроизведения себе подобных живыми организмами, что является главным признаком жизни.
Особая роль ДНК в живом организме определяется такой ее фундаментальной особенностью, как способность к самоудвоению.
Гигантские молекулы ДНК эукариот имеют много участков репликации – репликонов, тогда как относительно небольшие кольцевые молекулы ДНК прокариот представляют каждая один репликон. Полирепликативный характер огромных молекул ДНК эукариот обеспечивает возможность ее репликации без одновременной деспирализации всей молекулы. Так, хромосомы клетки человека имеют более 50 000 репликонов, которые синтезируются как самостоятельные единицы. Если бы молекула ДНК эукариот удваивалась как один репликон, то этот процесс растянулся бы на несколько месяцев. Благодаря полирепликации он сокращается до 7–12 ч. В остальном в общих чертах процессы репликации прокариот и эукариот весьма похожи.
Рис. 1. Полуконсервативный принцип репликации ДНК
Процесс репликации ДНК в репликоне происходит в 3 этапа, в которых участвуют несколько разных ферментов.
Начинается репликация ДНК с локального участка, где двойная спираль ДНК (под действием ферментов ДНК-геликазы, ДНК-топоизомеразы и др.) раскручивается, водородные связи разрываются и цепи расходятся. В результате образуется структура, названная репликативной вилкой.
На втором этапе происходит типичный матричный синтез. К образовавшимся свободным связям присоединяются по принципу комплементарности (А-Т, Г-Ц) свободные нуклеотиды. Этот процесс идет вдоль всей молекулы ДНК. У каждой дочерней молекулы ДНК одна нить происходит от материнской молекулы, а другая является вновь синтезированной. Такая модель репликации получила название полуконсервативной (рис. 1). Этот этап осуществляет фермент ДНК-полимераза (известно несколько ее разновидностей).
Рис. 2. Схема репликации ДНК
На третьем этапе происходит закручивание спирали и восстановление вторичной структуры ДНК при помощи ДНК-гиразы.
Большинство ферментов, участвующих в репликации ДНК, работают в мультиэнзимном комплексе, связанном с ДНК. На основании этого американский биохимик Б. Альбертс выдвинул концепцию реплисомы, однако отдельные структуры, аналогичные рибосомам, пока не выявлены. Слаженная работа ферментов позволяет осуществлять репликацию с огромной скоростью: у прокариот – около 3000 п. н. (пар нуклеотидов) в секунду, у эукариот – 100–300 п. н. в секунду. Две новые молекулы ДНК представляют собой точные копии исходной молекулы.
Механизмы репликации весьма сложны, и многие детали этого процесса, особенно у высших животных, до настоящего времени неизвестны.
Репликация ДНК
Вы будете перенаправлены на Автор24
Репликация ДНК – это механизм самокопирования молекулы, а также основное свойство наследственного материала живых клеток.
Сущность процесса репликации ДНК
При репликации молекулы ДНК водородные связи между комплементарными азотистыми основаниями (аденином — тимином и гуанином — цитозином) рвутся при помощи специального фермента — хеликазы, и цепи расходятся.
После того, как водородные связи разорвутся, при участии фермента ДНК-полимеразы на каждой из цепей синтезируется новая («дочерняя») цепь ДНК (к каждому нуклеотиду разошедшихся нитей ДНК фермент ДНК-полимераза подстраивает комплементарный ему нуклеотид). Исходным материалом для такого синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.
Особенностью процесса репликации ДНК является тот факт, что ее молекулы сформированы из двух цепей и образуют двойную спираль. В ходе репликации молекулы ДНК расходятся, и каждая дочерняя цепь может пристроить к себе новую цепь ДНК по принципу комплементарности. В результате этого из одной двойной спирали образуется две. Обе дочерние цепи идентичны исходной цепи и одна молекула образует две идентичные друг другу.
Тем самым репликация ДНК имеет полуконсервативный характер, каждая дочерняя молекула ДНК имеет одну материнскую цепь и одну вновь синтезированную. Репликация эукариот начинается в подготовительном этапе клеточного деления или в S-фазе клеточного цикла.
Механизм репликации ДНК и участвующие в нем основные ферменты характерны для большинства существующих ныне организмов. Однако существует ряд исключений среди бактерий или вирусов.
При этом расхождение цепей исходных молекул ДНК обеспечивается ферментом геликазой. Этот фермент в определенных местах способствует разрыву водородных связей, находящихся между азотистыми основаниям и ДНК. Эти ферменты перемещаются с затратой энергии.
Готовые работы на аналогичную тему
Геликаза – это фермент, который обеспечивает расхождение цепей ДНК при процессе репликации.
Особенности репликации ДНК
В процессе репликации ДНК также участвуют и другие ферменты, которые имеют не менее важное значение в процессе образования новой дочерней цепочки.
Цепочки ДНК не должны соединяться после процесса репликации, для их удержания на расстоянии друг от друга существуют дестабилизирующие белки. Они выстраиваются в ряд и образуют зоны репликации, которые именуются репликационными вилками. Репликационные вилки формируются достаточно закономерно, но не в любых местах ДНК. Их образование происходит строго в точках начала процесса репликации из определенной последовательности нуклеотидов. Таких нуклеотидов существует более трехсот штук. Эти места могут распознаваться специализированными белками и образовывать своего рода «репликационный глаз». В нем и расходятся две молекулы ДНК.
Точка начала репликации может идти в прямом и обратном направлении по всей длине хромосомы. Последний случай способствует расхождению цепи ДНК как вперед, так и назад. Один репликационный глазок дает две репликационные вилки.
Репликон – это единица репликации молекулы ДНК от точки начала процесса и до момента ее окончания.
Так как цепи ДНК имеют спиральную закрученность, то они разделяются хеликазой и формируют появление дополнительных витков, находящихся перед репликационной вилкой. Процесс репликации ДНК сопровождается весьма высокой степенью напряжения. Для снятия этого напряжения молекула ДНК должна проворачиваться вокруг собственной оси один раз при расхождении каждой из 10 пар расходящихся нуклеотидов. Именно такое их количество формирует один виток спирали. Такая ситуация не происходит потому, что находит весьма более эффективный способ нейтрализации напряжения при репликации спирали.
Далее происходят несколько ключевых процессов:
Фермент ДНК – полимераза способствует образованию водородных связей и после этого нуклеотид связывается с последним нуклеотидом дочерней цепи. При этом происходит отделение пирофосфата и их расщепление на отдельные фосфаты.
Реакция отщепления пирофосфата в результате гидролиза выгодна энергетически, так как формирующие ее связи уходят в цепь. Полученная энергия используется полимеразой.
Полимераза обладает возможностью:
Если нуклеотид, который должен быть последним присоединен к новой цепи, не комплементарен матричному, то полимераза его удалит.
Таким праймером выступает кроткая молекула РНК, которая синтезируется РНК праймазой и спаренной матричной цепью ДНК. Существует два типа сборки молекулы ДНК фрагментарная и непрерывная. Непрерывная сборка молекулы ДНК проходит гораздо быстрее. При этом формируется лидирующая и запаздывающая цепь ДНК.
Процесс репликации ДНК у прокариот протекает быстро до тысячи нуклеотидов в секунду. У эукариот в секунду репликации подвергается только сто нуклеотидов. У прокариот существует кольцевые молекулы ДНК, который являются по сути одним репликоном. В связи с этим синтез ДНК начинается в нескольких точках, но не всегда одновременно.
Таким образом, репликация ДНК лежит в основе многих генетически обусловленных процессов и позволяет наследственному материалу реализоваться в полной мере и по заранее «закрепленным» процессам.