Экспрессия gfap что это

Аутоиммунная астропатия

Экспрессия gfap что это. Смотреть фото Экспрессия gfap что это. Смотреть картинку Экспрессия gfap что это. Картинка про Экспрессия gfap что это. Фото Экспрессия gfap что это

Аутоиммунная глиальная фибриллярная астроцитопатия с кислым белком (A-GFAP-A) недавно была охарактеризована как новое аутоиммунное заболевание центральной нервной системы (ЦНС) с антителом к ​​GFAP в качестве биомаркера. Однако неспецифические симптомы A-GFAP-A способствуют ошибочному диагнозу. Пациенты нередко демонстрируют начальные симптомы в виде лихорадки, головной боли и ригидности затылочной кости. Наблюдались легкие признаки раздражительности, активные сухожильные рефлексы и дизурия; некоторые врачи отмечали преходящую потерю сознания. В спинномозговой жидкости (ЦСЖ) выявляется лимфоцитоз, повышенный уровень белка и пониженный уровень глюкозы. Магнитно-резонансная томография (МРТ) показывает усиление радиального гадолиния перпендикулярно боковому желудочку. Следует исключать вирусный менингит или туберкулезный менингит. Однако, их воспалительные и патогенные показатели не выявялют аномальных изменений, а эмпирические антибиотики и противовирусные препараты не приводят к заметному выздоровлению. Выявлены случаи с сильно положительной экспрессией антитела GFAP в спинномозговой жидкости, а симптомы резко снижаются в своей выраженности после импульсного лечения высокими дозами метилпреднизолона.

A-GFAP-A с симптомами, подобными менингиту, может первоначально маскироваться под внутричерепную инфекцию, и быстрое обнаружение антител к GFAP имеет важное значение для дифференциации.

Источник

Экспрессия gfap что это

Экспрессия gfap что это. Смотреть фото Экспрессия gfap что это. Смотреть картинку Экспрессия gfap что это. Картинка про Экспрессия gfap что это. Фото Экспрессия gfap что это

До недавнего времени нейроны считали основными функциональными единицами нервной системы, тогда как клетки глии – лишь опорными и вспомогательными элементами. Однако за последние несколько лет эта концепция сильно изменилась. Исследования показывают, что глиальные клетки не просто образуют опорный каркас нервной ткани, но также обеспечивают нормальное функционирование нейронов: поддерживают баланс ионов, регулируют уровень нейротрансмиттеров в синаптической щели, выделяют глиотрансмиттеры, участвуют в энергетическом обмене и образовании гематоэнцефалического барьера, вырабатывают цитокины и факторы роста, способствуют формированию нейрональных сетей, удаляя малоактивные синапсы во время развития мозга [1]. Из всех глиальных клеток астроциты наиболее многочисленны и выполняют самые разнообразные функции. Исторически астроциты подразделяют на два типа, основываясь на морфологии и расположении: протоплазматические и фиброзные, находящиеся в сером и белом веществе соответственно. Но результаты последних исследований показывают, что гетерогенность астроглии не ограничивается этими двумя фенотипами.

Основываясь на экспериментальных данных, S. Miller с соавт. (2018) показали, что при развитии нейродегенеративных заболеваний, таких как болезни Паркинсона и Альцгеймера, профиль астроцитов изменяется, в частности снижается экспрессия калиевых каналов Kir4.1 и транспортера глутамата Glt1, а экспрессия глиального фибриллярного кислого белка (GFAP) повышается, в то время как при эпилепсии астроглия характеризуется пониженной экспрессией Kir4.1, Glt1, а также синтетазы глутамина (GS) и каналов AQP4 [2]. При развитии процессов нейровоспаления профиль астроцитов тоже изменяется. S. Liddelow с соавт. (2017) продемонстрировали, что под воздействием липополисахарида астроциты изменяют фенотип на нейротоксический (А1), который характеризуется повышенной экспрессией компонентов системы комплемента, в частности С3, но это происходит только в том случае, если микроглиальные клетки тоже активированы; в то время как нейропротекторный фенотип (А2) характеризуется повышенной экспрессией S100а10, Stat3 и CD14 [3]. Таким образом, молекулярный профиль глиальных клеток изменяется под воздействием различных внутренних и внешних факторов, и можно выделить фенотипы астроцитов, характерные для того или иного патологического состояния.

Большинство исследований посвящено изменениям глии при развитии нейродегенеративных заболеваний [4], процессов нейровоспаления, сопутствующих стрессовым расстройствам [5] или развитию системной иммунной реакции. Однако гетерогенность астроцитов в физиологическом состоянии и при нормальном старении также представляет большой интерес. Аналогично нейронам, которые различаются по морфологии, нейротрансмиттерному профилю и функциональным особенностям в разных регионах мозга, астроциты тоже демонстрируют морфологические и функциональные отличия. Например, региональной гетерогенностью экспрессии отличаются щелевые контакты астроцитов, состоящие из белков коннексинов CX43 и CX30: CX43 экспрессируется повсеместно в мозге, но в особенности в гиппокампе, в то время как CX30 – преимущественно в таламусе и мозжечке, значительно меньше – в коре и гиппокампе [6]. Даже в отношении белка цитоскелета GFAP существуют различия: в белом веществе чаще встречаются астроциты, для которых характерна высокая экспрессия GFAP (GFAPhi), в то время как в сером веществе большинство астроцитов экспрессируют этот белок в меньшем количестве (GFAPlow) [7]. Более того, астроциты демонстрируют гетерогенность внутри одного региона. Так, в гиппокампе мыши было обнаружено две популяции: так называемые пассивные астроциты, которые экспрессируют только транспортеры глутамата, и активные, для которых характерно наличие как транспортеров, так и рецепторов глутамата. Таким образом, астроциты представляют собой гетерогенную популяцию глиальных клеток как в морфологическом, так и в функциональном отношении. Исследование молекулярных механизмов этой гетерогенности необходимо для лучшего понимания нейрон-глиальных взаимодействий в здоровом мозге, а также при развитии различных патологических состояний. Целью настоящего исследования было изучение региональной гетерогенности астроцитов мозга крысы в отношении экспрессии двух наиболее часто используемых астроцитарных маркеров (GFAP и GS) in vitro.

Материалы и методы исследования

Для приготовления культур клеток использовали 3-дневных (Р3) крыс Rattus norvegicus domestica. Животных содержали в стандартных условиях вивария при световом режиме 12/12, доступе к корму и воде ad libitum. Эксперименты проводили в соответствии с этическими правилами работы с животными (приказ МЗ и СР РФ № 708н от 23.08.2010 г. «Правила лабораторной практики в Российской Федерации» и «European Convention for the Protection of Vertebral Animals Used for Experimental and Other Scientific Purposes». CETS No. 123). В работе использовали оборудование и реактивы для приготовления культур от ThermoFisher Scientific (США), реактивы для гистологии от Sigma Aldrich (США), антитела для иммуногистохимии и среду для приготовления препаратов от Abcam (Великобритания).

Полученные препараты сканировали на конфокальном лазерном микроскопе LSM 780 (Zeiss, Германия) с использованием ультрафиолетового, аргонового и гелий-неонового лазеров. Всего было сделано по 15 фотографий в режиме z-stack для каждого региона мозга. Подсчет интенсивности флуоресценции проводили в режиме maximum intensity projection в программе ImageJ с учетом параметров «площадь клетки» и «интегрированная плотность». Скорректированную интенсивность флуоресценции для каждой клетки определяли отдельно по двум каналам и с учетом площади клетки и интенсивности флуоресценции фона. Измерения уровня флуоресценции GFAP и GS проводили на 200 клетках из каждого региона мозга. Статистическую обработку полученных данных осуществляли в программе GraphPad Prism 8 с использованием one-way ANOVA с последующим Sidak тестом для множественных сравнений. Статистически значимыми считали различия при р≤0,05. Анализ корреляции проводился с помощью вычисления коэффициента Пирсона.

Результаты исследования и их обсуждение

Астроциты, выделенные из разных регионов мозга, демонстрируют гетерогенность экспрессии GFAP и GS in vitro (рис. А-В). При анализе интенсивности флуоресценции было обнаружено, что между астроцитами из церебральной коры и гиппокампа нет статистически значимых различий в количестве белка GFAP (р=0,09), в то время как в астроцитах из ствола мозга экспрессия GFAP значительно выше (p

Источник

Экспрессия gfap что это

Экспрессия gfap что это. Смотреть фото Экспрессия gfap что это. Смотреть картинку Экспрессия gfap что это. Картинка про Экспрессия gfap что это. Фото Экспрессия gfap что это

До недавнего времени нейроны считали основными функциональными единицами нервной системы, тогда как клетки глии – лишь опорными и вспомогательными элементами. Однако за последние несколько лет эта концепция сильно изменилась. Исследования показывают, что глиальные клетки не просто образуют опорный каркас нервной ткани, но также обеспечивают нормальное функционирование нейронов: поддерживают баланс ионов, регулируют уровень нейротрансмиттеров в синаптической щели, выделяют глиотрансмиттеры, участвуют в энергетическом обмене и образовании гематоэнцефалического барьера, вырабатывают цитокины и факторы роста, способствуют формированию нейрональных сетей, удаляя малоактивные синапсы во время развития мозга [1]. Из всех глиальных клеток астроциты наиболее многочисленны и выполняют самые разнообразные функции. Исторически астроциты подразделяют на два типа, основываясь на морфологии и расположении: протоплазматические и фиброзные, находящиеся в сером и белом веществе соответственно. Но результаты последних исследований показывают, что гетерогенность астроглии не ограничивается этими двумя фенотипами.

Основываясь на экспериментальных данных, S. Miller с соавт. (2018) показали, что при развитии нейродегенеративных заболеваний, таких как болезни Паркинсона и Альцгеймера, профиль астроцитов изменяется, в частности снижается экспрессия калиевых каналов Kir4.1 и транспортера глутамата Glt1, а экспрессия глиального фибриллярного кислого белка (GFAP) повышается, в то время как при эпилепсии астроглия характеризуется пониженной экспрессией Kir4.1, Glt1, а также синтетазы глутамина (GS) и каналов AQP4 [2]. При развитии процессов нейровоспаления профиль астроцитов тоже изменяется. S. Liddelow с соавт. (2017) продемонстрировали, что под воздействием липополисахарида астроциты изменяют фенотип на нейротоксический (А1), который характеризуется повышенной экспрессией компонентов системы комплемента, в частности С3, но это происходит только в том случае, если микроглиальные клетки тоже активированы; в то время как нейропротекторный фенотип (А2) характеризуется повышенной экспрессией S100а10, Stat3 и CD14 [3]. Таким образом, молекулярный профиль глиальных клеток изменяется под воздействием различных внутренних и внешних факторов, и можно выделить фенотипы астроцитов, характерные для того или иного патологического состояния.

Большинство исследований посвящено изменениям глии при развитии нейродегенеративных заболеваний [4], процессов нейровоспаления, сопутствующих стрессовым расстройствам [5] или развитию системной иммунной реакции. Однако гетерогенность астроцитов в физиологическом состоянии и при нормальном старении также представляет большой интерес. Аналогично нейронам, которые различаются по морфологии, нейротрансмиттерному профилю и функциональным особенностям в разных регионах мозга, астроциты тоже демонстрируют морфологические и функциональные отличия. Например, региональной гетерогенностью экспрессии отличаются щелевые контакты астроцитов, состоящие из белков коннексинов CX43 и CX30: CX43 экспрессируется повсеместно в мозге, но в особенности в гиппокампе, в то время как CX30 – преимущественно в таламусе и мозжечке, значительно меньше – в коре и гиппокампе [6]. Даже в отношении белка цитоскелета GFAP существуют различия: в белом веществе чаще встречаются астроциты, для которых характерна высокая экспрессия GFAP (GFAPhi), в то время как в сером веществе большинство астроцитов экспрессируют этот белок в меньшем количестве (GFAPlow) [7]. Более того, астроциты демонстрируют гетерогенность внутри одного региона. Так, в гиппокампе мыши было обнаружено две популяции: так называемые пассивные астроциты, которые экспрессируют только транспортеры глутамата, и активные, для которых характерно наличие как транспортеров, так и рецепторов глутамата. Таким образом, астроциты представляют собой гетерогенную популяцию глиальных клеток как в морфологическом, так и в функциональном отношении. Исследование молекулярных механизмов этой гетерогенности необходимо для лучшего понимания нейрон-глиальных взаимодействий в здоровом мозге, а также при развитии различных патологических состояний. Целью настоящего исследования было изучение региональной гетерогенности астроцитов мозга крысы в отношении экспрессии двух наиболее часто используемых астроцитарных маркеров (GFAP и GS) in vitro.

Материалы и методы исследования

Для приготовления культур клеток использовали 3-дневных (Р3) крыс Rattus norvegicus domestica. Животных содержали в стандартных условиях вивария при световом режиме 12/12, доступе к корму и воде ad libitum. Эксперименты проводили в соответствии с этическими правилами работы с животными (приказ МЗ и СР РФ № 708н от 23.08.2010 г. «Правила лабораторной практики в Российской Федерации» и «European Convention for the Protection of Vertebral Animals Used for Experimental and Other Scientific Purposes». CETS No. 123). В работе использовали оборудование и реактивы для приготовления культур от ThermoFisher Scientific (США), реактивы для гистологии от Sigma Aldrich (США), антитела для иммуногистохимии и среду для приготовления препаратов от Abcam (Великобритания).

Полученные препараты сканировали на конфокальном лазерном микроскопе LSM 780 (Zeiss, Германия) с использованием ультрафиолетового, аргонового и гелий-неонового лазеров. Всего было сделано по 15 фотографий в режиме z-stack для каждого региона мозга. Подсчет интенсивности флуоресценции проводили в режиме maximum intensity projection в программе ImageJ с учетом параметров «площадь клетки» и «интегрированная плотность». Скорректированную интенсивность флуоресценции для каждой клетки определяли отдельно по двум каналам и с учетом площади клетки и интенсивности флуоресценции фона. Измерения уровня флуоресценции GFAP и GS проводили на 200 клетках из каждого региона мозга. Статистическую обработку полученных данных осуществляли в программе GraphPad Prism 8 с использованием one-way ANOVA с последующим Sidak тестом для множественных сравнений. Статистически значимыми считали различия при р≤0,05. Анализ корреляции проводился с помощью вычисления коэффициента Пирсона.

Результаты исследования и их обсуждение

Астроциты, выделенные из разных регионов мозга, демонстрируют гетерогенность экспрессии GFAP и GS in vitro (рис. А-В). При анализе интенсивности флуоресценции было обнаружено, что между астроцитами из церебральной коры и гиппокампа нет статистически значимых различий в количестве белка GFAP (р=0,09), в то время как в астроцитах из ствола мозга экспрессия GFAP значительно выше (p

Источник

Экспрессия gfap что это

Экспрессия gfap что это. Смотреть фото Экспрессия gfap что это. Смотреть картинку Экспрессия gfap что это. Картинка про Экспрессия gfap что это. Фото Экспрессия gfap что это

Ишемический инсульт головного мозга (ИИ) – многофакторное заболевание, основным патогенетическим фактором которого является атеросклероз магистральных сосудов и сосудов головного мозга.

Существует много методов диагностики и профилактики атеросклероза. В качестве диагностики применяют: допплерографическое сканирование сосудов, магнитно-резонансную томографию, компьютерная томография и т. д. Для профилактики рекомендуют избегать воздействия факторов риска атерообразования, применять статины, а в роли категорического решения – реконструктивные сосудистые операции. Также существуют и прогностические методики, определяющие вероятность возникновения инсульта в группах риска. Одна из них была разработана авторами статьи [1]. В данной работе приведены материалы, полученные в рамках выполнения диссертационной работы И.А. Кадыровой [2].

На наш взгляд, группой, сочетающей в себе многие факторы риска, являются пациенты с метаболическим синдромом (МС). Им присущи следующие характеристики: повышенное артериальное давление, инсуллинорезистентность и/или повышенный уровень глюкозы крови, абдоминальное ожирение, дислипидемии. Зачастую у таких пациентов повышен уровень мочевой кислоты, С-реактивного белка, изменен гормональный профиль. Все эти факторы запускают и поддерживают формирование атеросклероза.

Согласно изданиям «Diabetes Care» и «Stroke» у пациентов с метаболическим синдромом обнаружено бессимптомное ишемическое повреждение головного мозга [3,4]. Это показано при помощи магнито-резонансной томографии. В последнее время широко используют нейроспецифические маркеры: нейрон-специфическую енолазу (NSE), глиальный фибриллярный кислый протеин (GFAP), матриксную металлопротеиназу-9 (ММP-9) для определения повреждения нейрональной и глиальной ткани головного мозга [5, 6]. Но сведений о применении этих маркеров у пациентов с МС до манифестации острого нарушения мозгового кровообращения найдено не было.

Целью нашего исследования явилось определение у пациентов с МС маркеров повреждения головного мозга: NSE, GFAP, ММP-9, чтобы описать их концентрацию и прогностическую ценность в развитии острого нарушения мозгового кровообращения.

Научной новизной нашего исследования явилось определение концентраций NSE, GFAP, ММP-9 в сыворотке крови у пациентов с МС. Данное исследование призвано изучить состояние головного мозга у пациентов с МС с точки зрения концентраций нейроспецифических белков и рассмотреть изменение концентраций как прогностический критерий острого нарушения мозгового кровообращения по ишемическому типу [2].

Материалы и методы исследования. В исследование было включено 157 участников в возрасте от 50 до 80 лет с равным включением мужчин и женщин.

Первую группу (контрольную) составили 38 практически здоровых людей. Критериями включения в контрольную группу явились: возраст от 50–80 лет, индекс массы тела (ИМТ) в пределах 18,5–25,0, нормальное артериальное давление, показатели биохимического анализа крови, соответствующие норме [2]. Вторую группу представили пациенты с МС в количестве 39 человек. Диагностирование метаболического синдрома проводилось по критериям International Diabet Federation (IDF 2005). В третью группу вошли 44 пациента с ИИ в возрасте от 50–80 лет, обоих полов. Четвертую группу составили 36 пациентов с ИИ и МС.

Пациенты, испытавшие ишемический инсульт, наблюдались в первые 12–72 часа после манифестации события. Забор крови для определения NSE производился в первые 12 часов, для определения GFAP и ММР-9 – в первые 24–72 часа, согласно рекомендациям к наборам реагентов.

Исследование включало в себя: анкетирование, измерение антропометрических данных, окружности талии, лабораторное обследование и клинико-инструментальное обследование. В анкете были представлены вопросы на выявление факторов риска. Для исследования использовалась следующая информация: пол, возраст, этническая принадлежность, данные о возможной симптоматике нарушения мозгового кровообращения, результаты антропометрических, лабораторных и клинико-инструментальных исследований, необходимых для определения метаболического синдрома и маркеров NSE, GFAP и ММР-9.

Биохимические исследования показателей липидного спектра крови включали определение общего холестерина, триглицеридов (ТГ), холестерина липопротеидов высокой и низкой плотности (хЛПВП и хЛПНП) стандартными методами на биохимическом анализаторе. Результаты оценивали в ммоль/л. Определение глюкозы крови проводилось путем забора капиллярной крови из пальца после 12-часового голодания. Результаты оценивались в ммоль/л. Концентрацию фибриногена оценивали в г/л. Забор проб крови на лабораторные анализы проводился у всех больных из локтевой вены натощак в стандартных условиях. Биохимические исследования крови проводились в лаборатории Центра Первичной Медико-Санитарной Помощи № 2 с обязательным внешним и внутренним контролем. Анализ крови проводился на биохимическом анализаторе BioSystemA-15 с использованием реагентов фирмы Vital [2].

Определение маркеров NSE, GFAP и ММР-9 проводилось в Лаборатории Коллективного Пользования (ЛКП) Карагандинского государственного медицинского университета. Кровь собиралась вакуумными системами Vacutainer с гелем для отделения сыворотки. После забора кровь в первый час центрифугировалась и транспортировалась в ЛКП для дальнейшего исследования. Лизированные образцы исключались из исследования. Для определения маркеров использовались следующие наборы реагентов: NSE ELISA (Fujirebio), Human GFAP ELISA (BioVendor), Human MMP-9 ELISA (Bender MedSystems). Иммуноферментный анализ проводился на роботе Tecan Evolizer 100. Результаты оценивались: для NSE в мкг/л, для GFAPи ММР-9 в нг/мл.

Диагностирование метаболического синдрома осуществлялось по критериям IDF (2005): абдоминальное ожирение (окружность талии у мужчин > 94 см, у женщин > 80 см) и любые два из нижеперечисленных признаков: 1) ТГ≥ 1,7 ммоль/л; 2) хЛПВП у мужчин

Источник

Диагностические значения особенностей строения микрососудов глиальных опухолей головного мозга

Экспрессия gfap что это. Смотреть фото Экспрессия gfap что это. Смотреть картинку Экспрессия gfap что это. Картинка про Экспрессия gfap что это. Фото Экспрессия gfap что это

Полный текст

Аннотация

Диффузные глиомы – наиболее распространенные первичные опухоли головного мозга с непропорционально высоким уровнем смертности. Характеристики микрососудов имеют важное диагностическое и прогностическое значение, однако результаты предыдущих исследований противоречивы.

Цель работы: оценить особенности ангиогенеза в диффузных глиомах на основе определения качественных и количественных характеристик микрососудов и определить их взаимосвязь с гистологическим типом опухоли. В диффузных глиомах головного мозга (n=76), используя GFAP- негативный статус эндотелия при наличии исключительно GFAP-позитивных опухолевых клеток, была измерена и подсчитана плотность расположения сосудов (мкм-1), удельная площадь (%), удельная площадь просвета (%), а также средний диаметр микрососудов (мкм). Микроваскулярная пролиферация была оценена с помощью индекса пролиферации эндотелия сосудов (Ki-67). Установлена возможность рутинной оценки ангиогенеза в диффузных глиомах с помощью маркеров GFAP и Ki-67. В диффузных глиомах головного мозга выявлена выраженная взаимосвязь между особенностями строения микроциркуляторного русла неопластической ткани и Grade глиомы по классификации ВОЗ.

Ключевые слова

Полный текст

Диффузные глиомы – наиболее распространенные первичные опухоли головного мозга с чрезвычайно высоким уровнем летальности, построенные из клеток, имеющих черты астроцитарной и/или олигодендроглиальной дифференцировки. Согласно пересмотренной классификации опухолей ЦНС ВОЗ (4-е пересм. изд., 2016 г.) был введён «интегрированный» диагноз, который формируется на основе определения патогистологических и молекулярных особенностей новообразования [1]. На первом этапе определяют именно гистологический вариант глиомы, основываясь на характерных для отдельных диагностических категорий фенотипических признаках с использованием как рутинной окраски, так и иммуногистохимических технологий [2].

Учитывая особенности строения и форму кровеносных сосудов, в диффузных глиомах выделяют 4 основных морфологических типа, а именно: 1) гломерулоидний тип – группа сосудов, окруженных соединительнотканной стромой; 2) сосудистые гирлянды – сосуды с или без соединительнотканной стромы, которые вместе формируют гирляндоподобные структуры и чаще локализуются вокруг некротически измененной ткани; 3) сосудистые кластеры – отдельные ячейки микрососудов (≥3) причудливой формы без соединительнотканной стромы; 4) капилляроподобные сосуды – равномерно распределенные тонкие микрососуды, напоминающие нормальные капилляры головного мозга [4, 5].

Неоднократно указывалось на диагностическое и независимое от патогистологического диагноза прогностическое значение таких показателей ангиогенеза как микрососудистая плотность (micro-vascular density) 8, общая сосудистая площадь (total microvascular area) [9], морфологический тип представленных сосудов [4, 5]. Существует взаимосвязь особенностей строения микрососудистого русла и других морфологических и клинических признаков опухолей [10].

Использование иммуногистохимических (ИГХ) методик позволяет упростить и объективизировать исследования сосудов. Наиболее часто применяются следующие маркеры микрососудистой стенки: CD34, CD31, фактор фон Виллебранда.

Целью исследования было оценить особенности ангиогенеза в диффузных глиомах на основе определения характеристик микрососудов и выявить их взаимосвязь с гистологическим типом опухоли.

Материалы и методы

Было проанализировано 76 образцов глиальных опухолей головного мозга (табл. 1), полученные путем биопсии или оперативного вмешательства, преимущественно в нейрохирургическом отделении Днепропетровской областной клинической больницы им. И.И. Мечникова и подлежащих иммуногистохимическому исследованию в морфологическом отделе лечебно-диагностического центра ООО «Аптеки медицинской академии» (г. Днепр) в течение 2006-2016 гг. Гистологический диагноз был установлен, опираясь на современные гистологические и иммуногистохимические критерии [3].

Таблица 1.Характеристика исследуемой группы пациентов (n, %)

Количество
случаев, (n)

диффузная астроцитома (ДА) – Grade II

анапластическая астроцитома (АА) – Grade III

глиобластома – Grade IV

олигодендроглиома (О) – Grade II

анапластическая олигодендроглиома (АО) – Grade III

Всего

Кроме рутинного гистологического исследования (окраска гематоксилин-эозином), образцы опухоли подвергались иммуногистохимическому анализу, который проводился согласно протоколам ком-пании Termo Scientific (TS), (США) для определения экспрессии GFAP (RTU (Dako Cytomation, Дания)) и Ki-67 (клон sp6, p. 1: 400 (TS, США)). В срезах толщиной 4 мкм использовали систему визуализации Lab Vision Quanto (TS, США) с выявлением белковой цепи с помощью DAB Quanto Chromogen (TS, США).

Определение морфотипа сосудов, подсчёт их количества, измерение площади сосуда, площади его просвета и диаметра были основаны на отсутствии GFAP-иммунореактивности в эндотелии при выраженной (+++), умеренной (++) или слабой (+) GFAP-иммунореактивности окружающих неопластических клеток.

Для морфометрического исследования были получены цифровые фотографии участков исследуемых опухолей при помощи камеры ZEISS Axiocam 105 color на микроскопе Axio Scope. A1 при увеличении объектива ×40. Каждый образец был иллюстрирован 3 фотографиями с наибольшей плотностью расположения микрососудов. Измерение площади и линейных размеров производилась с использованием инструментов пакета Image J 1.49v [11].

Средние измеренные параметры были использованы для расчёта плотности микрососудов на 1 мм 2 площади опухоли, удельной площади микрососудов (% от общей площади среза), удельной площади просветов микрососудов (% от общей площади среза), среднего диаметра микрососудов (в мкм) [12, 13]. Пролиферативная активность микрососудов была оценена по индексу пролиферации эндотелиоцитов – соотношению количества Ki-67-имунореактивных ядер эндотелиоцитов и их общего количества, выраженному в процентах [12].

Статистический анализ был проведен с использованием лицензионной программы «Statistica» (версия 6.1; серийный номер AGAR 909 E415822FA). Нормальность распределения значений исследуемых параметров была проверена c использованием критерия Шапиро-Уилка. Статистическую значимость различий характеристик изучаемых групп (n=5) опухолей определяли методом Краскела-Уоллиса, с последующим определением критерия Манна-Уитни для двух независимых выборок. С целью определения силы связи между показателями использовался коэффициент корреляции Спирмена. Значение p 0,05).

Экспрессия gfap что это. Смотреть фото Экспрессия gfap что это. Смотреть картинку Экспрессия gfap что это. Картинка про Экспрессия gfap что это. Фото Экспрессия gfap что это

Рис. 1. Количественные характеристики микрососудистого русла диффузных глиом головного мозга. А. Плотность расположения микрососудов (мкм-1). Б. Удельная площадь микрососудов (%). В. Удельная площадь просветов микрососудов (%). Г. Диаметр микрососудов (мкм). Д. Индекс пролиферации эндотелия (%)

В опухолях Grade II (ДА и О) регистрировались преимущественно капилляры, которые фенотипически не отличались от нормальных (94%). В АА и АО (Grade III) более часто отмечалось почкование, что отражалось на количестве сосудов, по форме похожих на нормальные (78%). Глиобластомы (Grade IV) отличались интенсивным ангиогенезом, что в 76% образцов приводило к формированию гирляндоподобных структур и лишь в 18% образцов были зафиксированы гломерулоидные сосуды; количество сосудов, которые были похожи на обычные капилляры головного мозга, составляло 37%.

Средние значения морфометрических показателей микрососудистого русла диффузных глиом представлены на рисунке 2. Достоверность отличий плотности микрососудов, удельной площади микрососудов, удельной площади просветов микрососудов и индекса пролиферации эндотелия в различных формах диффузных глиом установили с помощью теста Краскела-Уоллиса (p 0,05). Подобные зависимости были выявлены при анализе удельной площади просветов микрососудов, однако показатели АО оказались самыми низкими (p

Экспрессия gfap что это. Смотреть фото Экспрессия gfap что это. Смотреть картинку Экспрессия gfap что это. Картинка про Экспрессия gfap что это. Фото Экспрессия gfap что это

Рис. 1. Диффузная (А) и анапластическая (Б) астроцитомы головного мозга. GFAP-негативный эндотелий резко выделяется на фоне GFAP-реактивных опухолевых клеток. ИГХ, дополнительное окрашивание гематоксилином Майера, ×400

Cо степенью злокачественности по ВОЗ прямо достоверно коррелировали: плотность расположения сосудов (r=0,596), удельная площадь микрососудов (r=0,275), удельная площадь просветов микрососудов (r=0,813) и индекс пролиферации эндотелия (r=0,746).

Анализ корреляционных связей исследуемых параметров показал умеренную прямую достоверную связь между плотностью расположения микрососудов и индексом пролиферации эндотелия, а также их удельной площадью. Диаметр микрососудов не коррелировал ни с одним из исследуемых показателей (коэффициент корреляции Спирмена не имел статистической значимости).

В предыдущих исследованиях особенностей микрососудистого русла диффузных глиом, как и других солидных опухолей, широко применяли иммуногистохимические маркеры сосудистой стенки (CD34, CD31) [4, 5, 7-9, 12]. Однако, указанные маркеры достаточно редко используются в рутинной патологоанатомической диагностике интрапаренхиматозных опухолей головного мозга, поэтому мы использовали для морфометрических измерений негативное контрастирование сосудистой стенки. При этом маркер астроцитарной дифференцировки GFAP зарекомендовал себя наилучшим образом: во всех диффузных глиомах наблюдается выраженная или умеренная его экспрессия опухолевыми клетками при абсолютном отсутствии соответствующего белка в эндотелии сосудов [3].

Результаты морфометрических исследований показали зависимость показателей интенсивности образования новых сосудов от степени злокачественности глиом. При этом увеличение количественных параметров (плотность расположения микрососудов, индекс пролиферации эндотелия и др.) переходит в изменения качественных характеристик васкуляризации опухолевой ткани: образование каскада микрососудов (гирлянд) и гломерулоидных структур в высокозлокачественных новообразованиях [5, 9].

Инициаторами роста сосудов считают нарастающие в опухолевой ткани гипоксию и «псевдогипоксию». «Псевдогипоксия» обусловлена изменениями метаболизма, вызванными мутацией гена изоцитратдегидрогеназы, что характерно преимущественно для низкозлокачественных глиом. Впрочем, гипоксия, которая вероятно является сильнейшим стимулом, более выражена в густоклеточных плеоморфных неоплазиях (Grade III-IV).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *