Электроснабжение железных дорог что это
ЭЛЕКТРОСНАБЖЕНИЕ ЖЕЛЕЗНЫХ ДОРОГ
Общие принципы электроснабжения железных дорог
Железнодорожный транспорт на электрической тяге является наиболее производительным, экономичным и экологически безопасным. Поэтому с середины XX века и по настоящее время ведется активная работа по переводу железнодорожных магистралей на электрическую тягу. В настоящее время более 50 % железных дорог России являются электрифицированными. Кроме того, даже неэлектрифицированные участки железных дорог испытывают потребность в электрической энергии: она используется для целей обеспечения функционирования систем сигнализации, централизации, связи, освещения, работы вычислительной техники и т.д.
Электрическая энергия в России вырабатывается электростанциями, являющимися предприятиями энергетической отрасли. Железнодорожный транспорт потребляет около 7% электроэнергии, производимой в нашей стране. Она расходуется на обеспечение тяги поездов и питание нетяговых потребителей, к которым относятся железнодорожные станции с их инфраструктурой, устройства локомотивного, вагонного и путевого хозяйства, а также устройтсва регулирования движения поездов. К системе электроснабжения железной дороги могут быть подключены расположенные вблизи нее небольшие предприятия и населенные пункты.
Согласно п. 1 Приложения № 4 к ПТЭ на железнодорожном транспорте должно быть обеспечено надежное электроснабжение электрического подвижного состава, устройств СЦБ, связи и вычислительной техники как потребителей электрической энергии I категории, а также других потребителей в соответствии с установленной для них категорией.
Система электроснабжения железных дорог состоит из внешней сети (электростанции, трансформаторные подстанции, линии электропередачи) и внутренних сетей (тяговая сеть, линии электроснабжения устройств СЦБ и связи, осветительная сеть и др.).
На электростанциях вырабатывается трехфазный переменный электрический ток напряжением 6. 21 кВ частотой 50 Гц. Для передачи электрической энергии к потребителям напряжение на трансформаторных подстанциях повышают до 250…750 кВ и передают на большие расстояния с помщью высоковольтных воздушных линий электропередачи (ЛЭП). Вблизи мест потребления электроэнергии напряжение понижают до 110 кВ с помощью понижающих подстанций и подают в районные сети, к которым наряду с другими потребителями подключены тяговые подстанции электрифицированных железных дорог и комплектные трансформаторные подстанции, питающие нетяговые потребители, ток которым поступает по высоковольтно-сигнальным линиям электропередачи напряжением 6. 10 кВ.
Назначение и виды тяговых сетей
Тяговая сеть предназначена для обеспечения электрической энергией электрического подвижного состава. Она состоит из контактных и рельсовых проводов, представляющих собой соответственно питающую и отсасывающую линии. Участки тяговой сети делят на секции (секционируют) и подсоединяют к соседним тяговым подстанциям. Это позволяет более равномерно загружать подстанции и контактную сеть, что в целом способствует снижению потерь электроэнергии в тяговой сети.
На железных дорогах России используют две системы тягового тока: постоянного и однофазного переменного.
Из-за относительно низкого напряжения в системе постоянного тока для получения необходимой мощности тягового подвижного состава (W=UI) по тяговой сети должен протекать ток большой силы. Для этого тяговые подстанции размещают недалеко друг от друга (через каждые 10. 20 км) и увеличивают площадь сечения проводов контактной подвески, иногда применяя двойной и даже тройной контактный провод.
При электрификации на переменном токе по контактной сети передается требуемая мощность при бóльшем напряжении (25 кВ) и, соответственно, меньшей силе тока по сравнению с системой постоянного тока. Тяговые подстанции в этом случае располагаются на расстоянии 50. 70 км друг от друга. Их техническое оснащение проще и дешевле, чем у тяговых подстанций постоянного тока (отсутстсвуют выпрямители). Кроме того, сечение проводов контактной сети примерно в два раза меньше, что позволяет существенно экономить дорогостящую медь. Однако конструкция локомотивов и электропоездов переменного тока сложнее, а их стоимость выше.
Устройство контактной сети
В соответствии с назначением электрифицированных путей используют простые и цепные воздушные контактные подвески. На второстепенных станционных и деповских путях при сравнительно небольшой скорости движения может применяться простая контактная подвеска («трамвайного» типа), представляющая собой свободно висящий натянутый провод, который закреплен с помощью изоляторов на опорах, расположенных на расстоянии 50…55 м друг от друга.
При высоких скоростях движения провисание контактного провода должно быть минимальным. Это обеспечивается конструкцией цепной контактной подвески, в которой контактный провод между опорами прикреплен к несущему тросу с помощью часто расположенных проволочных струн. Благодаря этому расстояние между поверхностью головки рельса и контактным проводом остается практически постоянным. Для цепной подвески в отличие от простой требуется меньше опор: они располагаются на расстоянии 65. 70 м друг от друга. На скоростных участках применяют цепную двойную контактную подвеску, в которой к несущему тросу на струнах подвешивают вспомогательный провод, к которому также струнами крепят контактный провод. В горизонтальной плоскости контактный провод расположен зигзагообразно относительно оси пути с отклонением у каждой опоры на ±300 мм. Благодаря этому обеспечиваются его ветроустойчивость и равномерное изнашивание контактных пластин токоприемников. Для уменьшения провисания контактного провода при сезонном изменении температуры его оттягивают к опорам, которые называются анкерными, и через систему тросов, роликов и изоляторов к ним подвешивают грузовые компенсаторы. Наибольшая длина участка между анкерными опорами (анкерного участка) устанавливается с учетом допустимого натяжения изношенного контактного провода и на прямых участках пути достигает 800 м.
При проходе токоприемника электроподвижного состава по воздушному промежутку он своим полозом кратковременно электрически соединяет обе секции контактной сети. Если по условиям питания секций это недопустимо, то их разделяют нейтральной вставкой, которая состоит из нескольких расположенных последовательно воздушных промежутков. Применение нейтральных вставок обязательно на линиях, электрифицированных на переменном токе, т.к. соседние секции контактной сети могут питаться от разных фаз, приходящих с электростанции, электрическое соединение которых друг с другом недопустимо. Проследовать нейтральные вставки ЭПС должен в режиме выбега и с выключенными вспомогательными машинами. Для ограждения мест секционирования контактной сети применяются специальные сигнальные знаки «токораздел», устанавливаемые на опорах контактной сети.
Схема оснащения контактными проводами станционных путей зависит от их назначения и типа станции. Над стрелочными переводами контактная сеть имеет так называемые воздушные стрелки, образуемые пересечением двух контактных подвесок.
Для защиты контактной сети от короткого замыкания между соседними тяговыми подстанциями располагают посты секционирования, оборудованные защитными выключателями. Все металлические конструкции, непосредственно взаимодействующие с элементами контактной сети или находящиеся в радиусе 5 м от них, заземляют (соединяют с рельсами). На линиях, электрифицированных на постоянном токе, применяют специальные диодные и искровые заземлители. Для защиты элементов и оборудования контактной сети от перенапряжений (например, вследствие удара молнии) на некоторых опорах устанавливают грозовые разрядники, имеющие дугогасительные рога.
На электрифицированных железных дорогах по рельсам проходит обратный тяговый ток. Для сокращения потерь электроэнергии и обеспечения нормального режима работы устройств автоматики и телемеханики на таких линиях предусматривают следующие особенности устройства верхнего строения пути:
Станции стыкования переменного и постоянного тока
Для исключения возможности подачи на отдельные секции контактной сети тока, не соответствующего находящемуся там подвижному составу, а также выезда ЭПС на секции контактной сети с другой системой тока переключатели блокируют друг с другом и с устройствами электрической централизации. Управление переключателями включают в единую систему маршрутно-релейной централизации управления стрелками и сигналами станции. Дежурный по станции, собирая какой-либо маршрут, одновременно с установкой стрелок и сигналов в требуемое положение производит соответствующие переключения в контактной сети.
Маршрутная централизация на станциях стыкования имеет систему счета заезда и выезда электроподвижного состава на участки пути переключаемых секций контактной сети, что предотвращает попадание его под напряжение другого рода тока. Для защиты оборудования устройств электроснабжения и электроподвижного состава постоянного тока при попадании на них в результате каких-либо нарушений напряжения переменного тока имеется специальная аппаратура.
Требования к устройствам электроснабжения
Устройства электроснабжения должны обеспечивать надежное электроснабжение:
К устройствам электроснабжения тягового подвижного состава предъявляются описанные выше требования в отношеннии величины напряжения в тяговой сети и высоты подвески контактного провода.
Резервные источники электроснабжения усройств СЦБ должны быть в постоянной готовности и обеспечивать бесперебойную работу устройств СЦБ и переездной сигнализации в течение не менее 8 ч при условии, что питание не отключалось в предыдущие 36 ч. Время перехода с основной системы электроснабжения на резервную или наоборот не должно превышать 1,3 с.
Для обеспечения надежного электроснабжения должны проводиться периодический контроль состояния сооружений и устройств электроснабжения, измерение их параметров вагонами-лабораториями, приборами диагностики и осуществляться плановые ремонтные работы.
Устройства электроснабжения должны защищаться от токов короткого замыкания, перенапряжений и перегрузок сверх установленных норм.
Металлические подземные сооружения (трубопроводы, кабели и т.п.), а также металлические и железобетонные конструкции, находящиеся в районе линий, электрифицированных на постоянном токе, должны быть защищены от электрической коррозии.
С целью безопасности обслуживающего персонала и других лиц, а также для улучшения защиты от токов короткого замыкания заземляют или оборудуют устройствами защитного отключения металлические опоры и элементы, к которым подвешена контактная сеть, а также все металлические конструкции, расположенные ближе 5 м от частей контактной сети, находящихся под напряжением.
Электрификация железных дорог
Железнодоро́жная электрифика́ция — комплекс мероприятий, выполняемых на участке железной дороги для возможности использовать на нём электроподвижной состав: электровозы, электросекции или электропоезда.
Для тяги поездов на электрифицированных участках железных дорог используются электровозы. В качестве пригородного транспорта используются электросекции или электропоезда.
Содержание
Системы электрификации
Системы электрификации можно классифицировать:
Обычно используют постоянный (=) или однофазный переменный (
) ток. При этом в качестве одного из проводников выступает рельсовый путь
Использование трёхфазного тока требует подвески как минимум двух контактных проводов,которые не должны соприкасаться ни при каких условиях (как у троллейбуса), поэтому эта система не прижилась, в первую очередь из-за сложности токосъема на больших скоростях.
При использовании постоянного тока напряжение в сети делают довольно низким, чтобы включать электродвигатели напрямую. При использовании переменного тока выбирают гораздо более высокое напряжение, поскольку на электровозе напряжение можно легко понизить с помощью трансформатора.
Система постоянного тока
В данной системе тяговые электродвигатели постоянного тока питаются напрямую от контактной сети. Регулирование осуществляется подключением резисторов, перегруппировкой двигателей и ослаблением возбуждения. В последние десятилетия стало распространяться импульсное регулирование, позволяющее избежать потерь энергии в резисторах.
Вспомогательные электродвигатели (привод компрессора, вентиляторов и др.) обычно также питаются напрямую от контактной сети, поэтому они получаются очень большими и тяжёлыми. В некоторых случаях для их питания используют вращающиеся или статические преобразователи (например, на электропоездах ЭР2Т, ЭД4М, ЭТ2М используется мотор-генератор, преобразующий постоянный ток 3000 В в трёхфазный 220 В 50 Гц).
Простота электрооборудования на локомотиве, низкий удельный вес и высокий КПД обусловили широкое распространение этой системы в ранний период электрификации.
Недостатком данной системы является сравнительно низкое напряжение контактной сети, поэтому для передачи одинаковой мощности требуется бОльший ток по сравнению с более высоковольтными системами. Это вынуждает:
Трамваи, троллейбусы используют постоянное напряжение =550 (600) В, метрополитен =750 (825) В.
Система переменного тока пониженной частоты
В ряде европейских стран (Германия, Швейцария и др.) используется система однофазного переменного тока 15 кВ 16⅔ Гц, а в США на старых линиях 11 кВ 25 Гц. Пониженная частота позволяет использовать коллекторные двигатели переменного тока. Двигатели питаются от вторичной обмотки трансформатора без каких-либо преобразователей. Вспомогательные электродвигатели (для компрессора, вентиляторов и др.) также обычно коллекторные, питаются от отдельной обмотки трансформатора.
Недостатком системы является необходимость преобразования частоты тока на подстанциях или строительство отдельных электростанций для железных дорог.
Система переменного тока промышленной частоты
Использование тока промышленной частоты наиболее экономично, но его внедрение встретило много трудностей. Поначалу использовали коллекторные электродвигатели переменного тока, преобразующие мотор-генераторы (однофазный синхронный электродвигатель плюс тяговый генератор постоянного тока, от которого работали тяговые электродвигатели постоянного тока), вращающиеся преобразователи частоты (дающие ток для асинхронных тяговых электродвигателей). Коллекторные электродвигатели на токе промышленной частоты работали плохо, а вращающиеся преобразователи были слишком тяжёлыми и неэкономичными.
Система однофазного тока промышленной частоты (25 кВ 50 Гц) начала широко применяться только после создания во Франции в 1950-х годах электровозов со статическими ртутными выпрямителями (игнитронами; позже они заменялись на более современные кремниевые выпрямители — из экологических и экономических соображений); затем эта система распространилась и во многих других странах (в том числе в СССР).
При выпрямлении однофазного тока получается не постоянный ток, а пульсирующий, поэтому используются специальные двигатели пульсирующего тока, а в схеме имеются сглаживающие реакторы (дроссель), снижающий пульсации тока, и резисторы постоянного ослабления возбуждения, включенные параллельно обмоткам возбуждения двигателей и пропускающие переменную составляющую пульсирующего тока, которая лишь вызывает ненужный нагрев обмотки.
Для привода вспомогательных машин используют либо двигатели пульсирующего тока, питающиеся от отдельной обмотки трансформатора (обмотка собственных нужд) через выпрямитель, либо промышленные асинхронные электродвигатели, питающиеся от расщепителя фаз (такая схема была распространена на французских и американских электровозах, а с них была перенесена на советские) или фазосдвигающих конденсаторов (применена, в частности, на российских электровозах ВЛ65, ЭП1, 2ЭС5К).
Недостатками системы являются значительные электромагнитные помехи для линий связи, а также неравномерная нагрузка фаз внешней энергосистемы. Для повышения равномерности нагрузки фаз в контактной сети чередуются участки с разными фазами; между ними устраивают нейтральные вставки — короткие, длиной несколько сотен метров, участки контактной сети, которые подвижной состав проходит с выключенными двигателями, по инерции. Они сделаны для того, чтобы пантограф не перемыкал находящийся под высоким линейным (межфазным) напряжением промежуток между секциями в момент перехода с провода на провод. При остановке на нейтральной вставке на неё возможна подача напряжения от передней по ходу секции контактной сети.
Железные дороги России и стран бывшего Советского Союза, электрифицированные по системе переменного тока используют напряжение
25000 В) частотой 50 Гц.
Стыкование систем электроснабжения
Разнообразие систем электроснабжения вызвало появление пунктов стыкования (систем тока, напряжений, частоты тока). При этом возникло несколько вариантов решения вопроса организации движения через такие пункты. Выявились 3 основные направления:
1. Оборудование станции стыкования переключателями, позволяющими подавать на отдельные участки контактной сети тот или иной род тока. Например, поезд прибывает с электровозом постоянного тока, затем этот электровоз отцепляется и уезжает в оборотное депо или тупик для отстоя локомотивов. Контактную сеть на этом пути переключают на переменный ток, сюда заезжает электровоз переменного тока и отправляется с поездом. Недостатком такого способа является удорожание электрификации и содержание устройств электроснабжения, а также требует смены локомотива.
3. Применение тепловозной вставки — оставление между участками с разными системами электроснабжения небольшого тягового плеча, обслуживаемого тепловозами. На практике применяется на участке Кострома — Галич протяженностью 126 км: в Костроме постоянный ток (= 3000 В), в Галиче — переменный (
25 000 В), транзитом проходят поезда на Орск, Алма-Ату, Бишкек. При таком способе «стыкования» значительно ухудшаются условия эксплуатации линии: в два раза повышается время стоянки составов, снижается эффективность электрификации из-за содержания и пониженной скорости тепловозов.
История электрификации железных дорог в бывшем СССР
В 1926 году электротяга была внедрена на пригородных линиях в Баку.
С 1933 года обозначился курс на первоочередное внедрение электрификации в трёх случаях:
В 1950-1955 гг. началось первое, ещё осторожное расширение полигона электрификации. Начался переход с напряжения 1500 В на 3000 В на всех пригородных узлах, дальнейшее развитие пригородных узлов, удлинение электрифицированных линий до соседних областных центров с внедрением электролокомотивной тяги для пассажирских и грузовых поездов. «Островки» электрификации появились в Риге, в Куйбышеве, в Западной Сибири, Киеве.
См. также
Источники
Moody, G T «Part One». Southern Electric. — 3rd edition ed. — Лондон: Ian Allan Ltd., 1960 год.
ЭЛЕКТРОСНАБЖЕНИЕ ЖЕЛЕЗНЫХ ДОРОГ
УСТРОЙСТВА ЭЛЕКТРОСНАБЖЕНИЯ
В систему электрифицированных железных дорог России (рис.1) входят сооружения и устройства, составляющие ее внешнюю часть (тепловые, гидравлические и атомные электростанции, линии электропередачи) и тяговую часть (тяговые подстанции, контактная сеть, рельсовая цепь, питающая и отсасывающая линии).
Рис.1 «Общий вид электрифицированной ж.д.постоянного тока и питающих её устройств: 1- электростанция; 2 – повышающий трансформатор; 3 – высоковольтный выключатель; 4 – линия электропередачи; 5 – тяговая подстанция; 6 – блок быстродействующих выключателей и разъединителей; 7 – отсасывающая линия; 8 – питающая линия; 9 – выпрямитель; 10 – тяговый трансформатор; 11 – высоковольтный выключатель; 12 – разрядник.
Электростанции вырабатывают трехфазный ток напряжением 220-380 В, который затем повышают на подстанциях для передачи на большие расстояния.
Вблизи мест потребления электроэнергии напряжение понижают на трансформаторных подстанциях до 220 кВ и подают в районные сети высокого напряжения, к которым подключены потребители электроэнергии, в том числе и тяговые подстанции электрифицированных железных дорог, питающие контактную сеть.
Электрифицированные железные дороги России работают на постоянном или однофазном переменном токе.
Относительно низкое напряжениеявляется основным недостатком системы постоянного тока. Для поддержания нужного уровня напряжения на токоприемниках локомотивов тяговые подстанции размещают на расстоянии 10-25 км. На линиях с большой грузонапряженностью и интенсивным пассажирским движением приходится не только уменьшать расстояние между подстанциями, но и увеличивать сечение контактной сети (подвешивают дополнительный контактный провод).
Тяговые подстанции переменного тока служат только для понижения напряжения переменного тока, получаемого от электросетей, до 27,5 кВ.
Контактная сеть предназначена для передачи электрической энергии, получаемой от тяговых подстанций к электроподвижному составу и должна обеспечивать надежный токосъем при наибольших скоростях движения в любых атмосферных условиях.
Существуют различные конструкции контактной сети для наземного электрического транспорта и метрополитенов. На наших железных дорогах принята конструкция (рис.2), основными элементами которой являются опоры; контактная подвеска, состоящая из несущего троса, контактных и усиливающих проводов; консоли, фиксаторы и т.д.
Рис.2 Устройство контактной сети на двухпутном перегоне: 1 – несущий трос; 2 – контактный провод; 3 – усиливающий провод; 4 – струна; 5 – фиксатор; 6 – консоль; 7 – опора.
Рис.3 Цепная одинарная подвеска: 1 – консоль; 2 – несущий трос; 3 – струны; 4 – изолятор; 5 – контактный провод; 6 – фиксатор.
Опоры железобетонные или металлические располагаются вдоль железнодорожного пути на расстоянии 65-80 м друг от друга.
Консоли укреплены в верхней части опор. К ним на изоляторах подвешен медный или биметаллический несущий трос.
Контактный провод изготовлен из меди и с помощью струн подвешен к биметаллическому или медному несущему тросу. Расстояние между струнами обычно составляет 6-12 м.
На прямых участках пути контактные провода расположены в плане зигзагообразно относительно оси пути на 300 мм в каждую сторону (рис.4). Это необходимо для обеспечения равномерного износа накладок токоприемников электроподвижного состава.
Рис.4 Расположение контактного провода на прямых участках
Такое расположение контактного провода осуществляется с помощью фиксаторов, размещенных на каждой опоре. Фиксаторы также препятствуют раскачиванию контактной сети от бокового ветра.
Для уменьшения стрел провеса контактного провода при сезонном изменении температуры его оттягивают к опорам, которые называются анкерными, и через систему блоков и изоляторов к ним подвешивают грузовые компенсаторы (рис.5.).
Рис.5 Сопряжение анкерных участков: 1,4 – анкерные опоры; 2,3 – переходные опоры; I, II – контактные подвески сопрягаемых анкерных участков
Высота подвески контактного провода над уровнем верха головки рельса должна быть не менее 5750 мм и не превышать 6800 мм.
Для надежной работы контактной сети и удобства обслуживания ее делят на отдельные участки (секции) с помощью воздушных промежутков и нейтральных вставок (изолирующих сопряжений), а также секционных и врезных изоляторов.
При проходе токоприемника электроподвижного состава по воздушному промежутку он кратковременно электрически соединяет обе секции контактной сети. Если по условиям питания секций это недопустимо, то их разделяют нейтральной вставкой, которая состоит из нескольких последовательно включенных промежутков (рис.6).
Рис.6 Нейтральная вставка: 1 – дополнительная контактная подвеска; 2,3 – секционные разъединители; 4,5 – предупредительные сигналы; I,II – контактные подвески сопрягаемых анкерных участков.
Применение таких вставок необходимо на участках переменного тока, когда смежные секции питаются от разных фаз трехфазного тока. Длина нейтральной вставки устанавливается с таким расчетом, чтобы при любых положениях поднятых токоприемников электроподвижного состава полностью исключалось одновременное замыкание контактных проводов нейтральной вставки с проводами прилегающих к ней секций контактной сети.
3.2 ХОЗЯЙСТВО ЭЛЕКТРОСНАБЖЕНИЯ ЖЕЛЕЗНЫХ ДОРОГ.ОРГАНИЗАЦИЯ УПРАВЛЕНИЯ И ПРЕДПРИЯТИЯ ЭЛЕКТРОСНАБЖЕНИЯ
Руководство отраслью электроснабжения всех железных дорог и промышленных предприятий железнодорожного транспорта осуществляет Департамент электрификации и электроснабжения ОАО «РЖД». Главными задачами Департамента являются обеспечение бесперебойной работы устройств электроснабжения, развитие базы электроснабжения, разработка планов электрификации железных дорог.
Департамент осуществляет оперативное и техническое руководство службами электроснабжения железных дорог, важнейшей задачей которых является бесперебойное снабжение электрической энергией электрифицированных участков дороги и потребителей электрической энергии во всех отраслях хозяйства дороги, а также всех других потребителей, подключенных к электросетям дороги.
Свою деятельность службы осуществляют через линейные предприятия — дистанции электроснабжения.
В функции дистанций электроснабжения входят:
· прием электрической энергии от единой электрической сети страны и подача ее в контактную сеть;
· содержание и обслуживание подстанций, контактной сети, электрических сетей нетяговых потребителей и других технических устройств, относящихся к электроснабжению, кроме рельсовых цепей, которые обслуживаются дистанциями пути.