Энтальпия пара в чем измеряется

Энтальпия — что это такое простыми словами

Энтальпия пара в чем измеряется. Смотреть фото Энтальпия пара в чем измеряется. Смотреть картинку Энтальпия пара в чем измеряется. Картинка про Энтальпия пара в чем измеряется. Фото Энтальпия пара в чем измеряется

Про энтальпию на простом языке

При работе с какими-либо расчётами, вычислениями и выполнении прогноза разнообразных явлений, связанных с теплотехникой, каждый сталкивается с понятием энтальпия. Но для людей, специальность которых не касается теплоэнергетики или которые лишь поверхностно сталкиваются с подобными терминами, слово «энтальпия» будет наводить страх и ужас. Итак, давайте разберёмся, действительно ли всё так страшно и непонятно?

Если попытаться сказать совсем просто, под термином энтальпия понимается энергия, которая доступна для преобразования в теплоту при некотором постоянном давлении. Понятие энтальпия в переводе с греческого значит «нагреваю». То есть формулу, содержащую элементарную сумму внутренней энергии и произведенную работу, называют энтальпией. Эта величина обозначается буквой i.

Если записать вышесказанное физическими величинами, преобразовать и вывести формулу, то получится i = u + pv (где u – внутренняя энергия; p, u – давление и удельный объем рабочего тела в том же состоянии, для которого взято значение внутренней энергии). Энтальпия — аддитивная функция, т. е. энтальпия всей системы равна сумме всех составляющих её частей.

Энтальпия пара в чем измеряется. Смотреть фото Энтальпия пара в чем измеряется. Смотреть картинку Энтальпия пара в чем измеряется. Картинка про Энтальпия пара в чем измеряется. Фото Энтальпия пара в чем измеряется

Термин «энтальпия» сложен и многогранен.

Но если постараться в нём разобраться, то всё пойдёт очень просто и понятно.

Ну, что же, механизм работы понятен. Вам лишь нужно внимательно читать и вникать. С термином «Энтальпии» мы уже разобрались, также привели и его формулу. Но тут же возникает ещё один вопрос: откуда взялась эта формула и почему энтропия связана, к примеру, с внутренней энергией и давлением?

Суть и смысл

Для того, чтобы попытаться выяснить физический смысл понятия «энтальпия» нужно знать первый закон термодинамики:

энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в одинаковых количествах. Таким примером может служить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.

Уравнение первого закона термодинамики нам нужно преобразить в вид dq = du + pdv = du + pdv + vdp – vdp = d(u + pv) – vdp. Отсюда мы видим выражение (u + pv). Именно это выражение и называется энтальпией (полная формула приводилась выше).

Энтальпия также является величиной состояния, потому что составляющие u (напряжение) и p (давление), v (удельный объём) имеют для каждой величины определенные значения. Зная это, первый закон термодинамики возможно переписать в виде: dq = di – vdp.

В технической термодинамике используются значения энтальпии, которые высчитываются от условно принятого нуля. Все абсолютные значения этих величин весьма трудно определить, так как для этого необходимо учесть все составляющие внутренней энергии вещества при изменении его состояния от О к К.

Формулу и значения энтальпии привёл в 1909 г. учёный Г.Камерлинг-Оннесом.

В выражении i — удельная энтальпия, для всей массы тела полная энтальпия обозначается буквой I, по всемирной системе единиц энтальпия измеряется в Джоулях на килограмм и рассчитывается как:

Функции

Энтальпия («Э») является одной из вспомогательных функций, благодаря использованию которой можно значительно упростить термодинамический расчёт. Так например, огромное количество процессов подвода теплоты в теплоэнергетике (в паровых котлах или камере сгорания газовых турбин и реактивных двигателей, а также в теплообменных аппаратах) осуществляют при постоянном давлении. По этой причине в таблицах термодинамических свойств обычно приводят значения энтальпии.

Условие сохранения энтальпии лежит, в частности, в основе теории Джоуля — Томсона. Или эффекта, нашедшего важное практическое применение при сжижении газов. Таким образом, энтальпия есть полная энергия расширенной системы, представляющая сумму внутренней энергии и внешней – потенциальной энергии давления. Как любой параметр состояния, энтальпия может быть определена любой парой независимых параметров состояния.

Также, исходя из приведённых выше формул, можно сказать: «Э» химической реакции равна сумме энтальпий сгорания исходных веществ за вычетом суммы энтальпий сгорания продуктов реакции.
В общем случае изменение энергии термодинамической системы не является необходимым условием для изменения энтропии этой системы.

Итак, вот мы и разобрали понятие «энтальпии». Стоит отметить, что «Э» неразрывно связана с энтропией, о которой вы также можете прочесть позже.

Источник

Что такое энтальпия? (и его 11 видов)

Содержание:

И из всех физических величин, с которыми справляется эта дисциплина, одним из самых важных, несомненно, является энтальпия. Изменение этого термодинамического свойства определяет, что химические реакции в системе являются экзотермическими (они выделяют тепло) или эндотермическими (они поглощают тепло), что очень важно во многих областях науки.

Но что такое энтальпия? Как рассчитывается? Какие бывают типы? Как это связано с энтропией? В сегодняшней статье мы ответим на эти и многие другие вопросы об этой энергии, которая, хотя мы ее и не видим, определяет природу всего, что нас окружает.

Что такое энтальпия?

Энтальпия, представленная как H, это количество энергии, которым термодинамическая система в условиях постоянного давления обменивается с окружающей средой.. Другими словами, это термодинамическое свойство, изменение которого определяет, выделяет ли рассматриваемая химическая реакция энергию в виде тепла или необходимо поглощать эту тепловую энергию.

Следовательно, энтальпию можно понимать как количество тепловой энергии, которую термодинамическая система (регулируемая потоками температуры и энергии) излучает или поглощает, когда она находится под постоянным давлением. А под термодинамической системой мы можем понимать, в основном, любой физический объект.

Это одно из самых фундаментальных термохимических свойств, поскольку мы анализируем, как реакционная среда обменивается теплом (поглощая или выделяя его) с окружающей средой. А поглотит он его или высвободит, будет определяться не самой энтальпией (H), а ее изменением (ΔH).. И исходя из этого химическая реакция может быть двух типов:

Экзотермический: Когда ΔH 0 (изменение энтальпии отрицательное), реакция выделяет энергию в виде тепла. Они не потребляют тепло, а излучают его. Все реакции, в которых конечный продукт молекулярно проще, чем исходный, будут экзотермическими.

Эндотермический: Когда ΔH> 0 (изменение энтальпии положительное), реакция потребляет энергию в виде тепла. Они не выделяют энергию, а должны ее поглощать и расходовать. Все реакции, в которых конечный продукт молекулярно более сложен, чем исходный, будут эндотермическими.

Как рассчитывается энтальпия?

Как мы видели, основа энтальпии очень проста. Если его изменение отрицательное, рассматриваемая химическая реакция будет выделять тепловую энергию в среду. И если его изменение положительное, он будет поглощать энергию в виде тепла. Как мы можем это вычислить? Тоже очень просто.

Формула для расчета энтальпии выглядит следующим образом:

H = E + PV

Тем не менее, как мы уже сказали, что действительно интересует нас для определения термического поведения реакции, так это изменение энтальпии. Таким образом, мы находим эту новую формулу:

ΔH = ΔE + PΔV

Таким образом, если результат добавления изменения энергии к произведению давления и изменения объема положительный, это означает, что энтальпия увеличивается и, следовательно, тепловая энергия поступает в систему (это эндотермический эффект). Если, наоборот, результат этой суммы отрицательный, это означает, что энтальпия уменьшается на протяжении реакции и, следовательно, тепловая энергия покидает систему (она экзотермична).

Какие бывают типы энтальпии?

Мы уже точно видели, что такое энтальпия и как она рассчитывается. Теперь пришло время посмотреть, как он классифицируется в соответствии с природой химических реакций, которые он определяет, и как он влияет на тепловую энергию в них.

1. Энтальпия образования

Энтальпия образования определяется как количество энергии, необходимое для образования одного моля соединения (единица, с помощью которой измеряется количество вещества и которая эквивалентна 6,023 x 10 ^ 23 атомов или молекул соединения) от элементов, которые составляют его при стандартных условиях температуры и давления, то есть 25 ° C и 1 атмосфера соответственно.

2. Энтальпия разложения

Энтальпия разложения определяется как количество тепловой энергии, поглощаемой или выделяемой при один моль вещества распадается в его составных элементах.

3. Энтальпия горения

Энтальпия горения связана с горением веществ в присутствии кислорода. В этом смысле речь идет о энергия, выделяемая при сгорании одного моля вещества. Рассматриваемое вещество горит, когда вступает в реакцию с кислородом, и это экзотермические реакции, поскольку всегда выделяются тепло и свет.

4. Энтальпия гидрирования.

Энтальпия гидрирования определяется как энергия, выделяемая или поглощаемая, когда вещество мы добавляем молекулу водорода, чтобы обычно образовывать углеводород.

5. Энтальпия нейтрализации.

Энтальпия нейтрализации определяется как энергия, выделяемая или поглощаемая при смешивании кислоты (pH ниже 7) и основания (pH выше 7), которые в конечном итоге нейтрализуются. Отсюда и его название. Так долго как смесь кислотных и основных веществ, будет энтальпия нейтрализации, связанная с реакцией.

6. Энтальпия фазового перехода

Под энтальпией фазового перехода мы подразумеваем любое выделение или поглощение энергии, когда один моль определенного вещества изменить его агрегатное состояние. Другими словами, это энергия, связанная с изменением состояния между жидкостью, твердым телом и газом.

7. Энтальпия растворения

Энтальпия раствора определяется как энергия, поглощаемая или выделяемая при химическое вещество растворяется в водном растворе. То есть это энергия, связанная со смесью растворенного вещества и растворителя, имеющая ретикулярную фазу (поглощает энергию) и фазу гидратации (выделяет энергию).

8. Энтальпия плавления.

9. Энтальпия испарения.

10. Энтальпия сублимации.

11. Энтальпия затвердевания.

Как энтальпия связана с энтропией?

С другой стороны, энтропия прямо противоположна. И хотя неправильно определять его как величину, которая измеряет степень беспорядка в системе, верно, что это связано с энергией, недоступной в реакции. Таким образом, это определенным образом связано с молекулярным хаосом.

В любом случае энтальпия и энтропия связаны. Но каким образом? Что ж, правда в том, что это довольно сложно, но мы могли бы резюмировать это в следовать обратно пропорциональной зависимости: чем выше энтальпия (больше энергообмена), тем ниже энтропия (меньше беспорядка); при этом чем ниже энтальпия (меньше энергообмена), тем выше энтропия (больше беспорядка).

Культура Панамы: традиции, обычаи, гастрономия, религия

Источник

Как читать таблицы водяного пара

Содержание:

Если вы едете по неизвестной местности, вам понадобится карта или навигатор, если вы летите на самолете, вам не обойтись без расписания полётов. Так и таблицы водяного пара необходимы всем пользователям в индустрии пара. В этой статье мы познакомимся с таблицами пара, рассмотрим их виды и немного поговорим о присутствующих в них элементах.

Таблицы насыщенного водяного пара

Таблицы насыщенного водяного пара — необходимый инструмент для любого инженера, работающего с паром. Обычно их используют для определения зависимости температуры насыщенного пара от парового давления или, наоборот, давления от температуры насыщенного пара. Кроме этих параметров, таблицы обычно включают и другие показатели, такие как удельная энтальпия (h) и удельный объём (v).

Данные таблиц насыщенного водяного пара всегда отображают информацию о конкретной точке насыщения известной как точка кипения. Это точка, в которой вода (жидкость) и пар (газ) могут сосуществовать при одинаковых температуре и давлении. Так как H2O может быть и в жидком, и в газообразном состоянии, нам будут необходимы две подборки данных: данные о насыщенной воде (жидкости), которые обычно обозначаются подстрочной буквой f, и данные о насыщенном паре (газе), которые обозначают подстрочной буквой g.

Пример таблицы насыщенного пара

Обозначения:

При нагреве обычно используется скрытое тепло испарения (Hfg). Как видно из таблицы, это скрытое тепло испарения будет выше при более низком давлении. По мере увеличения парового давления скрытое тепло постепенно снижается и достигает 0 при суперкритическом давлении, например, 22.06 МПа.

Два формата: на основе давления и температуры

Так как давление и температура насыщенного пара напрямую связаны друг с другом, таблицы пара обычно доступны в двух форматах: на основе давления и температуры. В обоих содержится одинаковая информация, но классифицирована она по-разному.

Таблица насыщенного водяного пара, основанная на давлении

Давл. (изб.)Темп.Удельный объёмУдельная энтальпия
кПа изб.°Cм 3 /кгкДж/кг
PTVfVgHfHfgHg
099.970.00104341.673419.022572676
20105.100.00104751.414440.622432684
50111.610.00105291.150468.222252694
100120.420.00106070.8803505.622012707

Таблица насыщенного водяного пара, основанная на температуре

Темп.Давл. (изб.)Удельный объёмУдельная энтальпия
°CкПа изб.м 3 /кгкДж/кг
TPVfVgHfHfgHg
1000.0930.00104351.672419.122562676
11042.0510.00105161.209461.422302691
12097.3400.00106030.8913503.822022706
130168.930.00106970.6681546.421742720
140260.180.00107980.5085589.221442733
150374.780.00109050.39250632.321142746

Разные единицы измерения: избыточное и абсолютное давление

Таблицы насыщенного пара также используют два различных вида давления: абсолютное и манометрическое (избыточное).

Таблица насыщенного пара с абсолютным давлением

Давл. (абс.)Темп.Удельный объёмУдельная энтальпия
кПа°Cм 3 /кгкДж/кг
PTVfVgHfHfgHg
0
2060.060.00101037.648251.423582609
5081.320.00102993.240340.523052645
10099.610.00104321.694417.422582675

Таблица насыщенного пара с избыточным давлением

Давл. (изб.)Темп.Удельный объёмУдельная энтальпия
кПа изб.°Cм 3 /кгкДж/кг
PTVfVgHfHfgHg
099.970.00104341.673419.022572676
20105.100.00104751.414440.622432684
50111.610.00105291.150468.222252694
100120.420.00106070.8803505.622012707

Избыточное давление было придумано для простоты измерения давления по отношению к тому, которое мы обычно испытываем.

В таблицах пара, составленных на основе манометрического давления, атмосферное давление определяется как 0, а в таблицах с абсолютным давлением — 101.3 кПа. А для того чтобы отличать избыточное давление от абсолютного в конце добавляют «изб.», например, кПа изб. или фт/кв. дюйм изб..

Перевести показатели избыточного давления в показатели абсолютного

Для единиц СИ

Давление пара [кПа изб.] = Давление пара [кПа изб.] + 101.3 кПа

Важное замечание: Проблемы могут возникнуть в том случае, если перепутать абсолютное и манометрическое давление, именно поэтому надо быть особенно внимательными с единицами давления, указанными в таблице.

Сводная таблица

Избыточное давление

Абсолютное давление:

Таблицы перенасыщенного пара

Информацию о перенасыщенном паре нельзя получить из обычных таблиц насыщенного пара, для этого существуют специальные таблицы перенасыщенного пара. Происходит это потому, что температура перенасыщенного пара в отличии от температуры насыщенного может существенно меняться при одном и том же давлении.

В действительности, количество возможных комбинаций температуры и давления настолько велико, что даже теоретически не представляется возможным собрать их в одной таблице. В результате для перегретого пара используется общая сводная таблица данных о температуре и давлении.

Источник

СВОЙСТВА НАСЫЩЕННОГО ПАРА

Что это такое и как им пользоваться

Численные значения параметров теплоты, а также взаимосвязь между температурой и давлением, приведенные в настоящем Руководстве, взять из Таблицы «Свойства насыщенного пара».

Определение применяемых терминов:

Насыщенный пар

Чистый пар, температура которого соответствует температуре кипения воды при данном давлении.

Абсолютное давление

Абсолютное давления пара в барах (избыточное плюс атмосферное).

Зависимость между температурой и давлением

Каждому значению давления чистого пара соответствует определенная температура. Например: температура чистого пара при давлении 10 бар всегда равна 180°С.

Удельный объём пара

Масса пара, приходящаяся на единицу его объёма, кг/м3.

Теплота кипящей жидкости

Количество тепла, которое требуется чтобы повысить температуру килограмма воды от 0°С до точки кипения при давлении и температуре, указанных в Таблице. Выражается в ккал/кг.

Скрытая температура парообразования

Количество тепла в ккал/кг, необходимое для превращения одного килограмма воды при температуре кипения в килограмм пара. При конденсации одного килограмма пара в килограмм воды высвобождает такое же самое количество теплоты. Как видно из Таблицы, для каждого сочетания давления и температуры величина этой теплоты будет разной.

Полная теплота насыщенного пара

Сумма теплоты кипящей жидкости и скрытой теплоты парообразования в ккал/кг. Она соответствует полной теплоте, содержащейся в паре с температурой выше 0°С.

Как пользоваться таблицей

Кроме определения зависимости между давлением и температурой пара, Вы, также, можете вычислить количество пара, которое превратится в конденсат в любом теплообменнике, если известно передаваемое им количество теплоты в ккал. И наоборот, Таблицу можно использовать для определения количества переданной теплообменником теплоты если известен расход образующегося конденсата.

ПАР ВТОРИЧНОГО ВСКИПАНИЯ

Что такое пар вторичного вскипания:

Когда горячий конденсат или вода из котла, находящиеся под определенным давлением, выпускают в пространство, где действует меньшее давление, часть жидкости вскипает и превращается в так называемый пар вторичного вскипания.

Почему он имеет важное значение :

Этот пар важен потому, что в нем содержится определенное количество теплоты, которая может быть использована для повышения экономичности работы предприятия, т.к. в противном случае она будет безвозвратно потеряна. Однако, чтобы получить пользу от пара вторичного вскипания, нужно знать как в каком количестве он образуется в конкретных условиях.

Если воду нагревать при атмосферном давлении, ее температура будет повышаться пока не достигнет 100°С – самой высокой температуры, при которой вода может существовать при данном давлении в виде жидкости. Дальнейшее добавление теплоты не повышает температуру воды, а превращает ее в пар.

Теплота, поглощенная водой в процессе повышения температуры до точки кипения, называется физической теплотой или тепло-содержанием. Теплота, необходимая для превращения воды в пар, при температуре точки кипения, называется скрытой теплотой парообразования. Единицей теплоты, в общем случае, является килокалория (ккал), которая равна количеству тепла, необходимому для повышения температуры одного килограмма воды на 1°С при атмосферном давлении.

Однако, если воду нагревать при давлении выше атмосферного, ее точка кипения будет выше 100°С, в силу чего увеличится также и количество требуемой физической теплоты. Чем выше давление, тем выше температура кипения воды и ее теплосодержание. Если давление понижается, то теплосодержание также уменьшается и температура кипения воды падает до температуры, соответствующей новому значению давления. Это значит, что определенное количество физической теплоты высвобождается. Эта избыточная теплота будет поглощаться в форме скрытой теплоты парообразования, вызывая вскипание части воды и превращение ее в пар. Примером может служить выпуск конденсата из конденсатоотводчика или выпуск воды из котла при продувке. Количество образующегося при этом пара можно вычислить.

Конденсат при температуре пара 179,9 °C и давлении 10 бар обладает теплотой в количестве 182, 1ккал/кг. См. Колонку 5 таблицы параметров пара. Если его выпускать в атмосферу, т.е. при абсолютном давлении 1 бар, теплосодержание конденсата сразу же упадет до 99,7 ккал/кг. Избыток теплоты в количестве 82,3 ккал/кг вызовет вторичное вскипание части конденсата. Величину части конденсата в %, которая превратится в пар вторичного вскипания, определяют следующим образом :

Разделите разницу между теплосодержанием конденсата при большем и при меньшем давлениях на величину скрытой теплоты парообразования при меньшем давлением значении давления и умножьте результат на 100.

Выразив это в виде формулы, получим :

% пар вторичного вскипания

Энтальпия пара в чем измеряется. Смотреть фото Энтальпия пара в чем измеряется. Смотреть картинку Энтальпия пара в чем измеряется. Картинка про Энтальпия пара в чем измеряется. Фото Энтальпия пара в чем измеряется

q1 = теплота конденсата при большем значении давления до его выпуска

q2 = теплота конденсата при меньшем значении давления, т.е. в пространстве, куда производится выпуск

r = скрытая теплота парообразования пара при меньшем значении давления, при котором производится выпуск конденсата

% пара вторичного вскипания =Энтальпия пара в чем измеряется. Смотреть фото Энтальпия пара в чем измеряется. Смотреть картинку Энтальпия пара в чем измеряется. Картинка про Энтальпия пара в чем измеряется. Фото Энтальпия пара в чем измеряется

Энтальпия пара в чем измеряется. Смотреть фото Энтальпия пара в чем измеряется. Смотреть картинку Энтальпия пара в чем измеряется. Картинка про Энтальпия пара в чем измеряется. Фото Энтальпия пара в чем измеряется

График 2. Энтальпия пара в чем измеряется. Смотреть фото Энтальпия пара в чем измеряется. Смотреть картинку Энтальпия пара в чем измеряется. Картинка про Энтальпия пара в чем измеряется. Фото Энтальпия пара в чем измеряется

Объем пара вторичного вскипания при выпуске одного кубического метра конденсата в систему с атмосферным давлением.

Для упрощения расчетов, на графике показано количество пара вторичного вскипания, которое будет образовываться, если выпуск конденсата будет производится при разных давлениях на выходе

Пар… основные понятия

Влияние присутствия воздуха на температуру пара

Рис. 1 поясняет, к чему приводит присутствие воздуха в паропроводах, а в Таблице 1 и на Графике 1 показана зависимость снижения температуры пара от процентного содержания в нем воздуха при различных давлениях.

Влияние присутствия воздуха на теплопередачу

Воздух, обладая отличными изоляционными свойствами, может образовать, по мере конденсации пара, своеобразное «покрытие» на поверхностях теплопередачи и значительно понизить ее эффективность.

СО2 в газообразной форме, образовавшись в котле и перемещаясь вместе с паром, может растворится в конденсате, охлажденном ниже температуры пара, и образовать угольную кислоту. Эта кислота весьма агрессивна и, в конечном итоге «проест» трубопроводы и теплообменное оборудование. См. Рис.2. Если в систему попадает кислород, он может вызвать питтинговую коррозию чугунных и стальных поверхностей. См. Рис. 3.

Энтальпия пара в чем измеряется. Смотреть фото Энтальпия пара в чем измеряется. Смотреть картинку Энтальпия пара в чем измеряется. Картинка про Энтальпия пара в чем измеряется. Фото Энтальпия пара в чем измеряется

Паровая камера со 100% содержанием пара. Общее давление 10 бар. Давления пара 10 бар температура пара 180°С

Рис.1. Камера, в которой находится смесь пара и воздуха, передает только ту часть теплоты, которая соответствует парциальному давлению пара, а не полному давлению в ее полости.

Энтальпия пара в чем измеряется. Смотреть фото Энтальпия пара в чем измеряется. Смотреть картинку Энтальпия пара в чем измеряется. Картинка про Энтальпия пара в чем измеряется. Фото Энтальпия пара в чем измеряется

Паровая камера с содержанием пара 90%

И воздуха 10%. Полное давление 10 бар. Давление

Пара 9 бар, температура пара 175,4°С

Снижение температуры паро-воздушной смеси в зависимости от содержания воздуха

Температура насыщ. пара

Температура паро-воздушной смеси от к-ва воздуха в объему,°С

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *