Как подключить nrf24l01 к ардуино
Взаимодействие nRF24L01 с Arduino: удаленное управление серводвигателем
В то время как интернет вещей (IoT), межмашинное общение и тому подобное становятся всё более популярными, потребность в беспроводной связи становится всё более востребованной, и всё больше машин/устройств общаются друг с другом в облаке. Разработчики используют множество систем беспроводной связи, таких как Bluetooth Low Energy (BLE 4.0), Zigbee, ESP43 Wi-Fi модули, RF модули 433 МГц, Lora, nRF и т.д., и выбор посредника зависит от типа приложения, в котором она используется.
Одним из популярных беспроводных посредников для локальной сети является nRF24L01. Эти модули работают на частоте 2,4 ГГц (диапазон ISM) со скоростью передачи данных от 250 кбит/с до 2 Мбит/с, что является легальным во многих странах и может использоваться в промышленных и медицинских приложениях. Также утверждается, что при наличии соответствующих антенн эти модули могут передавать и принимать сигналы на расстоянии до 100 метров между ними. Интересно! Итак, в этом уроке мы узнаем больше об этих модулях nRF24L01 и о том, как связать их микроконтроллерной платформой, такой как Arduino. Мы также поделимся некоторыми решениями для часто возникающих проблем при использовании этого модуля.
Взаимодействие nRF24L01 с Arduino: удаленное управление серводвигателем
Знакомство с RF модулем nRF24L01
Модули nRF24L01 являются приемопередающими модулями, то есть каждый модуль может отправлять и принимать данные, но поскольку они полудуплексные, в какой-либо момент времени они могут либо передавать, либо принимать данные. Модуль содержит микросхему nRF24L01 от Nordic semiconductors, которая отвечает за передачу и прием данных. Микросхема обменивается данным с помощью интерфейса SPI и, следовательно, может легко взаимодействовать с любыми микроконтроллерами. С Arduino всё становится намного проще, так как для нее доступны библиотеки. Распиновка стандартного модуля nRF24L01 показана ниже.
Распиновка модуля nRF24L01
Рабочее напряжение модуля составляет от 1,9 В до 3,6 В (как правило, 3,3 В). Модуль потребляет очень маленький ток, составляющий всего 12 мА при нормальной работе, что делает его эффективным при использовании с аккумуляторами, и, следовательно, он может работать даже от элементов питания размером с монету. Несмотря на то, что рабочее напряжение составляет 3,3 В, большинство выводов толерантны к 5 В и, следовательно, могут напрямую подключаться к 5-вольтовым микроконтроллерам, таким как Arduino. Еще одним преимуществом использования этих модулей является то, что каждый модуль имеет 6 каналов связи (pipeline). Это означает, что каждый модуль может связываться с 6 другими модулями для передачи и приема данных. Это делает данный модуль пригодным для создания сетей с топологиями «звезда» и «ячеистая» в приложениях IoT. Кроме того, они имеют широкий диапазон адресов из 125 уникальных идентификаторов, поэтому в закрытом пространстве мы можем использовать 125 таких модулей, не мешающих друг другу.
Взаимодействие nRF24L01 с Arduino
В этом руководстве мы узнаем, как связать nRF24L01 с Arduino, управляя серводвигателем, подключенным к одной плате Arduino, путем изменения потенциометра, подключенного к другой плате Arduino. Для простоты мы использовали один модуль nRF24L01 в качестве передатчика и один в качестве приемника, но каждый модуль может быть отдельно запрограммирован для передачи и приема данных.
Принципиальная схема подключения модуля nRF24L01 к Arduino приведена ниже. Для разнообразия я использовал UNO для приемной части и Nano для предающей части. Но для других плат Arduino, таких как Mini и Mega, логика подключения остается неизменной.
Приемная часть: подключение модуля nRF24L01 к Arduino Uno
Как было сказано ранее, nRF24L01 взаимодействует с помощью интерфейса SPI. Для связи через SPI на Arduino Nano и UNO используются выводы 11, 12 и 13. Следовательно, мы подключаем выводы MOSI, MISO и SCK от nRF к выводам 11, 12 и 13 соответственно. Выводы CE и CS настраиваются пользователем, здесь я использовал выводы 7 и 8, но вы можете использовать любые выводы, изменив программу. Модуль nRF питается от вывода 3,3V на Arduino, что в большинстве случаев работать будет. Если нет, то можно попробовать отдельный источник питания. Помимо интерфейса nRF, я также подключил серводвигатель к выводу 7 и запитал его через вывод 5V на Arduino. Аналогично схема передатчика показана ниже.
Передающая часть: подключение модуля nRF24L01 к Arduino Nano
Соединения для передатчика точно такие же; кроме того, я использовал потенциометр, подключенный через выводы 5V и GND к Arduino. Выходное аналоговое напряжение, которое изменяется от 0 до 5 вольт, подается на вывод A7 Arduino Nano. Обе платы питаются через порт USB.
Работа с беспроводным приемопередающим модулем nRF24L01+
Однако для того, чтобы наш nRF24L01 работал без проблем, мы могли бы рассмотреть следующие вещи. Я долгое время работал с этим nRF24L01+ и изучил следующие моменты, которые могут помочь вам избежать препятствий. Вы можете попробовать это, когда модули не работают в нормальном режиме.
Тем не менее, если у вас есть проблемы, напишите в комментариях.
Программирование nRF24L01 для Arduino
Как и во всех программах, мы начинаем с включения заголовочных файлов. Поскольку nRF использует протокол SPI, мы включили заголовочный файл SPI, а также библиотеку, которую только что загрузили. Библиотека servo используется для управления серводвигателем.
Далее идет важная строка, в которой мы указываем выводы CE и CS. На нашей принципиальной схеме CE подключен к выводу 7, а CS – к выводу 8.
Все переменные, которые связаны с библиотекой RF, должны быть объявлены как составная структура. В данной программе переменная msg используется для отправки и получения данных от RF модуля.
Каждый RF модуль имеет уникальный адрес, используя который можно отправлять данные на соответствующее устройство. Поскольку у нас здесь только одна пара, мы устанавливаем адрес, равный нулю, как на передатчике, так и приемнике, но если у вас несколько модулей, вы можете установить ID на любую уникальную строку, состоящую из шести цифр.
Затем внутри функции void setup() мы инициализируем RF модуль и настраиваем его на работу в диапазоне 115, который свободен от шума, а также настраиваем модуль для работы в режиме минимального энергопотребления с минимальной скоростью 250 кбит/с.
Функция void WriteData() считывает данные и помещает их в переменную. Снова из 6 различных каналов, используя которые мы может считывать и записывать данные, здесь мы использовали 0xF0F0F0F066 в качестве адреса для чтения данных. Этот означает, что передатчик другого модуля записал что-то по этому адресу, и, следовательно, мы читаем это что-то с того же адреса.
Помимо этих строк, в программе используются другие строки для считывания положения потенциометра и преобразования этого показания в значение в диапазоне от 0 до 180 с помощью функции map и отправки его на приемный модуль, где мы соответствующим образом управляем сервоприводом.
Беспроводное управление серводвигателем с помощью nRF24L01
Когда вы будете готовы, загрузите программы передатчика и приемника (приведены ниже) на соответствующие платы Arduino и подайте на них питание через USB порт. Вы также может запустить монитор последовательного порта для обеих плат, чтобы проверить, какое значение передается, и что принимается. Если всё работает должным образом, когда вы поворачиваете ручку потенциометра на стороне передатчика, то сервопривод на другой стороне должен вращаться соответствующим образом.
Работа проекта показана на демонстрационном видео ниже. Вполне нормально, если эти модули не заработают с первой попытки. Если вы столкнулись с какой-либо проблемой, снова проверьте код и разводку и попробуйте приведенные выше рекомендации по устранению неполадок.
Код передающей части
Код приемной части
Видео
Arduino и NRF24L01 в одной плате. Первое знакомство
Привет хабровчане! Не так давно попалась мне в руки пара плат Arduino Nano со встроенным модулем NRF24L01, которые оказались достойной заменой популярной связки Arduino Nano + NRF24L01. Модуль NRF24L01 часто используется в различных проектах для обеспечения надежной беспроводной передачи данных. Небольшая цена, низкая задержка и энергопотребление, а также возможность выбора до128 каналов связи дает NRF24L01 преимущество перед другими радиочастотными модулями, такими как wifi, bluetooth, Zigbee и т.д.
В данной статье хочу поделиться с вами своим первым опытом работы как с Arduino RF, так и с NRF24L01 в целом.
Изображенную выше плату можно приобрести на Aliexpress. Данная плата является аналогом следующей схемы:
Для тестирования схемы я использую библиотеку RF24. В рамках данного обзора я рассмотрю:
передачу данных между платами Arduino RF;
передачу данных между Arduino RF и Raspberry Pi;
сравнение со связкой Arduino + модуль NRF24L01.
Передача данных между платами Arduino RF
Обе платы Arduino RF подключаются к портам одного ноутбука. Для работы с платами я использую среду Arduino Studio, в которой выполняю следующие настройки:
работа с разными портами в Arduino Studio
Если у вас есть проблема одновременного открытия двух окон SerialMonitor, в которые выводится информация от двух Arduino, подключенных к разным портам, нужно сначала запустить ArduinoStuio в обычном режиме и отобразить информацию с одного порта, а потом запустить среду ArduinoStuio в режиме «от администратора» и отобразить информацию с другого порта.
Для проверки плат использовался пример, поставляемый с библиотекой RF24, который нужно загрузить на обе платы Arduino.
код программы GettingStarted.ino
В рамках данного примера, одна плата настраивается как передатчик, а другая как получатель. В моем случае пины CE и CSN указываемые в конструкторе RF24 radio(CEpin, CSNpin) были 7 и 8 соответственно. После загрузки скетча на плату, в Serial monitor выводится строка:
Which radio is this? Enter ‘0’ or ‘1’. Defaults to ‘0’
Ввожу «1» в окошке отправителя и «0» в окошке получателя. После вывода следующей строки
*** PRESS ‘T’ to begin transmitting to the other node
выбираю «T» для настройки одной из Arduino как отправителя и «R» как получателя.
После выполнения вышеописанных настроек, получился следующий результат (время передачи пакета и пакет с числом 0.0, увеличивающимся с шагом 0.01):
Время передачи в среднем заняло всего 552 микросекунды
Передача данных между Arduino RF и Raspberry Pi
Для настройки Raspberry в качестве приемника, я выполнила следующие шаги:
С помощью Putty, подключаюсь к Raspberry по ssh, указывая Ip адрес Raspberry и порт 22 (по умолчанию логин «pi», пароль «raspberry» ).
P.S. Для удобства работы через графический интерфейс, можно скачать программу VNCviewer, после чего ввести в консоль Raspberry команду vncserver.
В консоли Raspbrry для настройки SPI выполняю следующую команду
Перезагружаюсь и обновляюсь
Далее устанавливаю библиотеку RF24 (например по инструкции на github или medium)
установка библиотиеки RF24 на Raspberry
Install prerequisites if there are any (MRAA, LittleWire libraries, setup SPI device etc)
Make it executable
Run it and choose your options
Run an example from one of the libraries
Edit the gettingstarted example, to set your pin configuration
В качестве примера также использую файл gettingstarted.py, после выполнения которого выбираю номер модуля «1» и режим «R».
код программы gettingstarted.py
Получился аналогичный предыдущему пункту результат (на изображении показан вывод в IDE ArduinoStudio и Thonny):
В данном случае время передачи одного из пакетов значительно выше. Такая ситуация повторилась несколько раз.
Сравнение со связкой Arduino Leonardo + модуль NRF24L01
Данный краткий обзор был бы совсем кратким, не выполни я пример gettingstarted на стандартной связке Arduino + NRFL01 и Raspberry + NRFL01
Схема подключения NRFL01 к Arduino Nano изображена в посте выше. У меня не было под рукой Arduino Nano, но была Arduino Leonardo, у которой SPI пины вынесены сбоку платы.
В конце поста, также покажу результат передачи информации о расстоянии до объекта, полученной с помощью имеющегося в наличии ультразвукового датчика, подключенного по схеме ( как подключается NRF24L01 модуль показано выше):
код Arduino US.ino
Результат выполнения показан ниже. Время передачи значительно выше. С ходу не хватает знаний понять, почему так вышло и как улучшить результат.
Заключение
К сожалению мне сходу не удалось найти в интернете подробных гайдов по работе с Arduino RF, поэтому пришлось пару недель повозиться. Знакомство с библиотекой Mirf как-то сразу не задалось. После многих попыток разобраться в теме, получился вот такой вот гайд. Оказалось, что работать с Arduino RF интересно и не так уж и трудно. Надеюсь что мой опыт пригодится новичкам и желающим построить какой-либо проект на базе Arduino RF. Также хочу выразить благодарность авторам постов про NRF24L01, которых набралось уже не мало 🙂
Урок 26.4 Соединяем две arduino по радиоканалу через nRF24L01+
При создании некоторых проектов, требуется разделить выполняемые задачи между несколькими arduino.
В этом уроке мы научимся соединять две arduino по радиоканалу ISM диапазона, используя радио модуль nRF24L01+, на расстоянии до 100 м. Если использовать радио модули NRF24L01+PA+LNA, то расстояние между arduino можно увеличить до 1 км, не меняя код скетча.
Преимущества:
Недостатки:
Нам понадобится:
Для реализации проекта нам необходимо установить библиотеки:
Видео:
Схема подключения:
Оба радио модуля nFR24L01+ подключены, через адаптер, к аппаратной шине SPI. Trema четырехразрядный LED индикатор подключён к цифровым выводам D2 и D3 (можно подключить к любым выводам Arduino). Сервопривод подключён к цифровому выводу D4 (можно подключить к любым выводам). Trema потенциометр и слайдер подключены к аналоговым входам A1 и A0 (можно подключить к любым аналоговым входам). Питание адаптера nFR24L01+ взято с контактов GND и Vcc (5 В).
Если Вы будете подключать модуль nFR24L01+ без адаптера, то модуль требуется запитать от напряжения 3,3 В постоянного тока.
Алгоритм работы:
Передатчик:
При старте (в коде setup) скетч настраивает работу радио модуля в режим передачи данных, указывая номер канала, скорость передачи, мощность передачи и идентификатор трубы. После чего, постоянно (в коде loop), считывает показания с Trema потенциометра и Trema слайдера, сохраняя их в массив data, и отправляет его радио модулю для передачи.
Приёмник:
При старте (в коде setup) скетч настраивает работу радио модуля, указывая те же параметры что и у передатчика, но в режим приёма данных, а также инициирует работу с LED индикатором и сервоприводом. После чего, постоянно (в коде loop), проверяет нет ли в буфере данных, принятых радио модулем. Если данные есть, то они читаются в массив data, после чего значение 0 элемента (показания Trema слайдера) выводится на LED индикатор, а значение 1 элемента (показания Trema потенциометра) преобразуются в градусы и используется для поворота сервопривода.
Подключение Arduino nrf24L01
В этой статье мы поговорим о nrf24l01 – одном из самым популярных и недорогих радиомодулей для проектов Arduino и интернета вещей IoT. Модули nrf24l01 для Arduino легко найти в любом интернет-магазине, они относительно недороги. При этом с их помощью можно организовать достаточно надежную многоканальную связь с подтверждением доставки пакетов между контроллерами ардуино и другими устройствами. В этой статье мы рассмотрим описание, распиновку nrf24l01, а также узнаем, какие библиотеки можно использовать с этим радиомодулем.
Описание модуля NRF24L01
Нельзя создать по-настоящему интересный проект, не дав возможность создания коммуникаций между различными элементами системы. Поэтому так важно выбрать правильную платформу для организации связи между модулями. NRF24l01 отлично подходит для создания распределенных систем с датчиками и контроллерами, разнесенными на расстояния до 100 метров.
NRF24l01 – это высокоинтегрированная микросхема с пониженным потреблением энергии (ULP) 2Мбит/с для диапазона 2,4 ГГц. При помощи модуля можно связать несколько устройств для передачи данных по радиоканалу. Можно объединить до семи приборов в одну общую радиосеть на частоте 2,4 ГГц, один из модулей будет выступать в роли ведущего, остальные – ведомые. Радиомодуль NRF24l01 стоит дешево, поэтому его можно встретить в самых разных проектах – от умного дома до различных самодельных роботов.
Характеристики nrf24l01
Основой модуля служит nRF24L01+ производства компании Nordic Semiconductor. На микросхеме расположены все необходимые элементы и вилка разъема. По интерфейсу SPI можно произвести настройку протокола, установить выходную мощность и наладить каналы обмена данных.
Сфера применения модуля nrf24l01
Одним из самых главных компонентов проектов IoT являются средства коммуникации. nrf24l01 можно с успехом применять в следующих областях:
В плату nRF24L01+ входят синтезатор частот, демодулятор, усилители и другие составляющие. Рабочая частота модуля определяется номером канала, диапазон частот, в котором происходит связь, 2,4 – 2,483 ГГц. Каналы располагаются через 1 МГц, то есть нулевому соответствует частота 2,4ГГц, каналу 83 – 2,483 ГГц.
Модуль имеет 4 рабочих режима – выключение (Power Down), спящий режим (Standby), прием данных(RX mode), передача данных (TX Mode). В режиме приема данных RX потребление тока выше, чем в режиме передачи данных TX.
За стабильную и надежную передачу и прием данных отвечает протокол Enhanced ShockBurst. Принимающее устройство должно давать ответ о приеме данных, подтверждая таким образом обратную связь.
Где купить модули
Купить nrf24L01 можно в любом интернет-магазине, торгующем электронными компонентами. Рекомендуется приобретать плату вместе со специальными модулями питания – это позволит избежать множество непредсказуемых проблем, связанных с нестабильным питанием. Также рекомендуем обратить внимание на уже готовые шилды и платы со встроенными чипами nrf. Вот несколько примеров на Алиэкспресс:
Распиновка NRF24L01
Помимо выходов питания линии сигналов могут подключаться к контактам с питающим напряжением 5 В. Вход устройства, которое подключается к плате, должен потреблять ток не выше 10 мА.
Микросхема содержит следующие выходы:
Организация питания nrf24l01
Во время запуска микроконтроллера могут возникнуть проблемы, которые связаны с тем, что не предусмотрена нужная сила тока в модуле питания 3,3 В. Из-за этого могут возникнуть помехи, мешающие стабильной работе. Обычно подобные трудности появляются, когда используются платы Arduino Uno, Nano, Mega, то есть в тех, в которых не хватает мощности. Для приведенных видов плат на пины подается небольшой ток 50 мА.
Существует несколько методов решения этой проблемы:
Различные версии модуля NRF24L01
Данная версия обладает дальностью до 100 м для открытого пространства, в помещении дальность ниже – до 30 м. Размеры 29х15 мм.
Мини NRF24L01. Характеристики и параметры те же, размеры 18х12 мм.
Модуль, оснащенный внешней антенной и усилителем. Дальность увеличена до 1000 м на открытых территориях.
Беспроводной модуль NRF2401 с антенной
Более сложный модуль nRF24LE1, работающий без платы Ардуино, то есть автономно.
Беспроводной модуль NRF2401 в Arduino
Подключение nRF24L01 к Ардуино
Вывод MOSI с платы nRF24L01 подключается к пину 11 для Ардуино Uno, Nano и на 51 для Arduino Mega. Контакт SCK нужно подключить к 13 для Ардуино Uno, Nano и 52 для Arduino Mega. MISO – к 12 для Ардуино Uno, Nano и 50 для Arduino Mega. Контакты CE и CSN подключаются к любому цифровому пину Ардуино. Питание – на 3,3 В. Если используется плата Arduino Mini, придется использовать внешний стабилизатор напряжения, так как на плате отсутствует выход 3,3В. Также к пинам питания можно добавить конденсатор на 10 мкФ и более для обеспечения стабильной и качественной работы. Модуль с припаянным конденсатором изображен на рисунке.
Питание для NRF2401
Внешний вид макета представлен на рисунке ниже.
При подключении важно не перепутать напряжение – 5 Вольт могут вывести модуль из строя.
Подключение к Ардуино через адаптер NRF24L01
Адаптер специально разрабатывался для модуля NRF24L01+. На нем имеется специальный стабилизатор напряжения и удобно расположены выходы к контроллерам и платам Ардуино.
Как видно, на адаптере имеется 2 вида разъемов. Двухрядный разъем используется для подключения радиомодуля, однорядный – для соединения с Ардуино. Отдельно расположены выходы на питание (5В) и землю.
Для подключения радиомодуль NRF24L01+ нужно вставить в соответствующий двухуровневый разъем. При помощи проводов адаптер подключается к плате Ардуино к тем же выводам, которые нужны для подключения напрямую к модулю. Для подключения к Arduino Uno, Nano: MISO-12, MOSI-11, SCK-13,выводы CE –к D10 и CSN – D9, вывод VCC к Arduino (+5V), а вывод GND к Arduino (GND).
Программирование nRF24L01
Для написания скетчей в среде ARDUINO IDE нужно установить 2 библиотеки – RF24 и SerialFlow. Первая нужна для работы с модулем, вторая – для пакетной передачи данных. Ссылки на скачивание библиотек вы найдете в конце статьи.
Пример программы для передатчика. В первую очередь создается объект класса SerialFlow:
В этой строке 9 и 10 – это свободные пины с Ардуино, к которым подключаются контакты CN и CSN.
Настройка формата передаваемых пакетов производится в функции setup:
Первый аргумент (в данном случае число 2) определяет размер передаваемого числа. Для конкретного случая число находится в диапазоне от 0 до 655535 и занимает 2 байта. Для 0 до 255 будет занят 1 байт. Второй аргумент – количество чисел.
Далее нужно настроить адреса передатчика и приемника:
Первым аргументом записывается адрес передатчика, вторым – адрес приемника.
Цикл loop выполняет отправку пакетов.
Пример программы для приемника. При получении данных приемник должен сигнализировать об этом. Данные будут отправляться в монитор порта Arduino IDE.
В коде так же записывается объект SerialFlow и настраиваются необходимые параметры пакета данных. Изменения происходят в строчке
Теперь первым аргументом должен быть указан адрес приемника, а вторым – передатчика.
После загрузки программы на оба модуля при правильном выполнении всех действий в окне будет появляться значение таймера в миллисекундах на передатчике.
Помимо библиотек RF24 и SerialFlow существует и другая – библиотека Mirf. Выбор той или иной библиотеки определяется удобством работы.
Операторы для передачи данных между двумя модулями с помощью библиотеки Mirf:
Передача структур nrf24l01
Использование структур удобно тем, что в них можно записать много переменных и отправить их другому устройству за один раз. Код нужно записывать так, чтобы ардуино передавала команду по цепочке остальным модулям. Каждый из модулей знает только свой адрес и адрес следующего за ним модуля.
Во время работы со структурами нужно внимательно рассчитать ее размер и указать PAYLOAD. Общий размер структуры будет равен сумме всех размеров составляющих ее переменных.
Основные элементы кода:
#define ADDR “mod0” //указывается адрес модуля
#define NEXT “mod1” //указывается адрес следующего модуля
boolean iamfirst=true;//начинает ли этот модуль цепочку?
#define PAYLOAD 5 //размер полезной нагрузки
Все модули в итоге будут получать одинаковый скетч, в котором различаться будут только переменные ADDR, NEXT и iamfirst.
Скачать библиотеки nrf24l01
Основная библиотека для работы с модулем – RF24. В библиотеке содержится огромное количество примеров программ. Важно отметить, что во время записи программы в ардуино нужно отключить модуль передатчика. Также перед первой инициализацией нужно сделать паузу в 2 секунды после подачи напряжения. Перед началом работы функцию RF24::flush_tx нужно сделать публичной и очистить буфер передачи перед отправкой новых сообщений.
Другая библиотека nrf24l01 – SerialFlow. Эта библиотека нужна для того, чтобы задавать формат передаваемого пакета, устанавливать функции для упаковки информации в пакет и их распаковки.
Библиотека Mirf. Эта библиотека является альтернативой вышеописанной RF24. Последняя ближе к стандартам, используемым для программирования ардуино, поэтому многим, особенно новичкам, может быть неудобна работа с mirf. Выбор той или иной библиотеки определяется только удобством и простотой ее для пользователя.
Выводы по nrf24l01
Беспроводной модуль nrf24l01 нельзя назвать простым в освоении устройством. И подключение, и программирование требует определенных навыков. Но стоимость и доступность модуля позволяет рекомендовать его для тех, кто занимается проектами интернета вещей или нуждается в простых инструментов для коммуникаций. Купив специальный адаптер для nrf24l01 вы можете существенно упростить подключение к ардуино. А использование библиотек позволяет максимально упростить код. Старайтесь не покупать модули nrf24l01 дешево у совсем уж неизвестных продавцов, и тогда никаких проблем с работой ваших проектов не будет.