Как подключить резистор к динамику
Резисторы в кроссах. Ставлю точку.
Периодически возникающие вопросы на тему
«куда и как поставить резисторы в пассивных кроссах чтобы ослабить сигнал на динамик»
заставили меня исследовать этот вопрос с максимальной точностью. По результатам докладываю:
1) Резистор 4 Ом последовательно перед кроссом. Форма АЧХ не изменилась, но частота среза стала 1500Гц.
2) Делитель до кросса, то есть 2 Ом последоательно и 4 Ом параллельно кроссу. Форма АЧХ изменилась совсем чуть-чуть (можно не обращать внимание даже). Частота среза стала 1150 Гц
4) Делитель на двух резисторах после кросса с номиналами, аналогичными случаю 2. Форма АЧХ и частота среза не изменились вообще.
Выводы.
Идеальный способ ослабления это резистивный делитель (два резистора. ) после фильтра.
Другой неплохой вариант это делитель перед кроссом.
Плохой вариант это одиночный резистор перед кроссом.
Совсем плохой вараинт это одиночный резистор после кросса.
Периодически возникающие вопросы на тему
«куда и как поставить резисторы в пассивных кроссах чтобы ослабить сигнал на динамик»
заставили меня исследовать этот вопрос с максимальной точностью. По результатам докладываю:
1) Резистор 4 Ом последовательно перед кроссом. Форма АЧХ не изменилась, но частота среза стала 1500Гц.
2) Делитель до кросса, то есть 2 Ом последоательно и 4 Ом параллельно кроссу. Форма АЧХ изменилась совсем чуть-чуть (можно не обращать внимание даже). Частота среза стала 1150 Гц
4) Делитель на двух резисторах после кросса с номиналами, аналогичными случаю 2. Форма АЧХ и частота среза не изменились вообще.
Выводы.
Идеальный способ ослабления это резистивный делитель (два резистора. ) после фильтра.
Другой неплохой вариант это делитель перед кроссом.
Плохой вариант это одиночный резистор перед кроссом.
Совсем плохой вараинт это одиночный резистор после кросса.
Искатель оправданых решений
Периодически возникающие вопросы на тему
«куда и как поставить резисторы в пассивных кроссах чтобы ослабить сигнал на динамик»
заставили меня исследовать этот вопрос с максимальной точностью. По результатам докладываю:
1) Резистор 4 Ом последовательно перед кроссом. Форма АЧХ не изменилась, но частота среза стала 1500Гц.
2) Делитель до кросса, то есть 2 Ом последоательно и 4 Ом параллельно кроссу. Форма АЧХ изменилась совсем чуть-чуть (можно не обращать внимание даже). Частота среза стала 1150 Гц
4) Делитель на двух резисторах после кросса с номиналами, аналогичными случаю 2. Форма АЧХ и частота среза не изменились вообще.
Выводы.
Идеальный способ ослабления это резистивный делитель (два резистора. ) после фильтра.
Другой неплохой вариант это делитель перед кроссом.
Плохой вариант это одиночный резистор перед кроссом.
Совсем плохой вараинт это одиночный резистор после кросса.
все же заключается в том, что самый лучший вариант ослабления, это делитель после кросса.
Так этож теория! Тем более извесна да-авным давно. Ставится делитель после фильтра.
Делитель это два резистора, «сопротивление» этого делителя должно ровняться нагрузке,
которую закладывали при расчете(т.е. соротивление динамика). В этом случае он не будет
влиять на характеристики фильтра.
Периодически возникающие вопросы на тему
«куда и как поставить резисторы в пассивных кроссах чтобы ослабить сигнал на динамик»
заставили меня исследовать этот вопрос с максимальной точностью. По результатам докладываю:
1) Резистор 4 Ом последовательно перед кроссом. Форма АЧХ не изменилась, но частота среза стала 1500Гц.
2) Делитель до кросса, то есть 2 Ом последоательно и 4 Ом параллельно кроссу. Форма АЧХ изменилась совсем чуть-чуть (можно не обращать внимание даже). Частота среза стала 1150 Гц
4) Делитель на двух резисторах после кросса с номиналами, аналогичными случаю 2. Форма АЧХ и частота среза не изменились вообще.
Выводы.
Идеальный способ ослабления это резистивный делитель (два резистора. ) после фильтра.
Другой неплохой вариант это делитель перед кроссом.
Плохой вариант это одиночный резистор перед кроссом.
Совсем плохой вараинт это одиночный резистор после кросса.
С уважением, Александр.
Если уж ставить один резистор после кросса, то НИКАК не последовательно, а параллельно.
Правда тогда резистор нужен с минимальной индуктивностью.
Если уж ставить один резистор после кросса, то НИКАК не последовательно, а параллельно.
Правда тогда резистор нужен с минимальной индуктивностью.
Причем я так подозреваю (судя по топологии схемы и размеру индуктивности нижнего кубика), что нижняя часть схемы это кросс твитера. Причем резистор на 1,5R является как раз подобием аттенюатора (хренового).
Включение одного резистора параллельно с динамиком (после кросса) ни к чему кроме как к изменению частоты среза и возможно изменению формы ачх фильтра не приведет. Ослебления в рабочей полоче частот не будет.
Что касается Вашего истинного вопроса, то отвечу следующим образом.
1) Одиночный резистор до кросса дает изменение АЧХ кросса. Если наличие резистора учитывать при расчете кросса, то это влияние можно частично или полностью нивелировать. Возможно на рисунке как раз такой случай.
2) В некоторых случаях одиночный резистор ставят до кросса сознательно, для снижения интермодуляционных искажений. Естественно это учитывают при расчетах. Опять же возможно на рисунке этот случай.
3) Повторяю смысл своего первоначального поста, только резистивный Г-образный делитель после кросса позволяет подбором номиналов его элементов добиваться любого ослабления без изменения АЧХ фильтра. Если расчитывать и делать кросс под конкретные динамики один раз и навсегда, то можно извращаться любым другим способом.
4) Сделать скриншоты могу, но не хочу делать за других их работу. Никто не мешает Вам самосотоятельно в 21-м веке установить соответствующую программу на ПК и провести любые моделирования.
Последовательно и параллельно
Хорошо, если у установщика есть возможность применить схему поканального усиления. Однако в большинстве случаев это считается непозволительной роскошью, и в процессе инсталляции аудиосистемы в девяти случаях из десяти возникает потребность нагрузить, к примеру, двухканальный аппарат четырьмя динамиками или четырехканальный — восемью. Собственно, страшного в этом ничего нет. Важно только держать в памяти несколько основных способов соединения громкоговорителей. Даже не несколько, а всего-то два: последовательный и параллельный. Третий — последовательно-параллельный — производная из двух перечисленных. Другими словами, если у вас имеется больше одного динамика на канал усиления и вы знаете с какими нагрузками может справиться аппарат, то выбрать одну, наиболее приемлемую схему из трех возможных не так уж и сложно.
Последовательное соединение динамиков
Понятно, что когда драйверы соединены в последовательную цепочку, возрастает сопротивление нагрузки. Также понятно, что с увеличением количества звеньев оно растет. Обычно потребность увеличения сопротивления возникает для снижения выходных показателей акустики. В частности, при установке тыловой подзвучки или динамика центрального канала, которые в основном выполняют вспомогательную роль, и значительных мощностей от усилителя им не требуется. В принципе последовательно можно соединить сколько угодно динамиков, однако их общее сопротивление не должно превышать 16 Ом: усилителей, работающих с более высокими нагрузками, немного.
Н а рисунке 1 показано, каким образом две динамические головки включаются в последовательную цепочку. Положительный выходной разъем канала усилителя соединяется с плюсовой клеммой динамика А, а «минус» того же драйвера — с «плюсом» динамика В. После чего минусовая клемма динамика В подключается к отрицательному выходу того же канала усиления. По той же схеме строится и второй канал.
Это два динамика. Если требуется последовательно соединить, скажем, четыре громкоговорителя, то метод аналогичный. «Минус» динамика В вместо того, чтобы подключаться к выходу усилителя, соединяется с «плюсом» С. Дальше от минусовой клеммы C бросается провод на «плюс» D, а уже от «минуса» D происходит соединение с отрицательным выходным разъемом усилителя.
Вычисление эквивалентного сопротивления нагрузке канала усиления, на который нагружена цепочка последовательно соединенных динамиков, производится простым сложением по следующей формуле: Zt = Za + Zb, где Zt — эквивалентное сопротивление нагрузке, а Za и Zb соответственно сопротивление динамиков А и В. К примеру, имеется у вас четыре 12-дюймовых сабвуферных головки сопротивлением в 4 ома и один-единственный стереоусилитель 2 х 100 Вт, не терпящий низкоомных (2 Ом и меньше) нагрузок. В этом случае последовательное соединение НЧ-динамиков — единственно возможный вариант. Каждый канал усиления при этом обслуживает пару головок с общим сопротивлением 8 Ом, что легко вписывается в указанные выше 16-омные рамки. Тогда как параллельное включение динамиков (о нем позже) приведет к недопустимому (меньше 2 Ом) снижению сопротивления нагрузки обоих каналов и в результате выходу из строя усилителя.
Ког да к одному каналу усиления последовательно подключается более одного динамика, это неизбежно отражается на выходной мощности. Вернемся к примеру с двумя соединенными последовательно 12-дюймовыми головками и одним 200-ваттным стереоусилителем, минимальное сопротивление нагрузки которого 4 Ом. Чтобы выяснить, сколько ватт при таких условиях сможет отдать динамикам усилитель, нужно решить еще одно несложное уравнение: Po = Pr x (Zr/Zt), где Po — подводимая мощность, Pr — измеренная мощность усилителя, Zr — сопротивление нагрузке, при котором проводились измерения реальной мощности усилителя, Zt — суммарное сопротивление динамиков, нагруженных на данный канал. В нашем случае получается: Po = 100 x (4/8). То есть 50 ватт. Динамиков у нас два, поэтому «полтинник» делится на два. В итоге каждая головка получит по 25 ватт.
Параллельное соединение динамиков
Здесь все в точности до наоборот: при параллельном соединении сопротивление нагрузке падает пропорционально количеству динамиков. Соответственно вырастает выходная мощность. Число громкоговорителей ограничено способностью усилителя работать на низких нагрузках и мощностными пределами самих динамиков, включенных параллельно. В большинстве случаев усилители вполне справляются с нагрузками в 2 ома, реже в 1 ом. Существуют аппараты, которым по зубам и 0,5 ома, но это уже действительно большая редкость. Что касается современных громкоговорителей, то здесь разброс мощностных параметров от десятков до сотен ватт.
Рисунок 2 демонстрирует, как подключить пару драйверов в параллель. Провод от плюсового выходного разъема соединяется с положительными клеммами динамиков А и В (проще всего соединить сначала выход усилителя с «плюсом» динамика А, а затем уже от него тянуть провод к динамику В). По той же схеме соединяются минусовой вывод усилителя с «минусами» обоих динамиков.
Вычисление эквивалентного сопротивления нагрузке канала усиления при параллельном соединении динамиков несколько сложнее. Формула такая: Zt = (Za x Zb) / (Za + Zb), где Zt — эквивалентное сопротивление нагрузке, a Za и Zb — сопротивление динамиков.
Теперь представим, что на низкочастотное звено в системе отводится опять-таки 2-канальный аппарат (2 х 100 Вт на нагрузку 4 Ом), но стабильно работающий при 2 омах. Включение двух 4-омных сабвуферных головок в параллель позволит значительно увеличить выходную мощность, поскольку сопротивление нагрузке канала усиления сократиться вдвое. По нашей формуле получаем: Zt = (4 * 4) / (4 + 4). В результате имеем 2 Ом, что при условии хорошего запаса по току у усилителя даст 4-кратный прирост мощности на канал: Po = 100 x (4/2). Или 200 ватт на канал вместо 50, полученных при последовательном соединении динамиков.
Последовательно-параллельное соединение динамиков
Обычно эта схема применяется для увеличения количества динамиков на борту транспортного средства с тем, чтобы добиться повышения суммарной мощности аудиосистемы при сохранении адекватного сопротивления нагрузке. То есть на один канал усиления можно задействовать сколько угодно динамиков, если их суммарное сопротивление находится в уже обозначенных нами пределах от 2 до 16 Ом.
Подключение, к примеру, 4 динамиков по этому способу производится следующим образом. Кабель от положительного выходного разъема усилителя соединяется с плюсовыми клеммами динамиков А и С. Затем «минуса» A и C подключаются к «плюсам» громкоговорителей B и D соответственно. Наконец, кабель от отрицательного выхода усилителя соединяется с минусовыми клеммами динамиков B и D.
Для вычисления суммарного сопротивления нагрузке канала усиления, который работает с четырьмя головками, соединенными по комбинаторному способу, применяется следующая формула: Zt = (Zab x Zcd) / (Zab x Zcd), где Zab — суммарное сопротивление динамиков А и В, а Zcd — суммарное сопротивление динамиков C и D (между собой они соединены последовательно, поэтому сопротивление суммируется).
Возьмем все тот же пример с 2-канальным усилителем, стабильно функционирующим при 2 омах. Только на этот раз два 4-омных сабвуфера, включенных параллельно, нас уже не устраивают, и мы хотим подключить к одному каналу усиления 4 НЧ-головки (тоже 4-омные). Для этого нам нужно знать, выдержит ли аппарат такую нагрузку. При последовательном соединении суммарное сопротивление будет равно 16 Ом, что никого не устраивает. При параллельном — 1 Ом, что уже не вписывается в параметры усилителя. Остается последовательно-параллельная схема. Простые подсчеты показывают, что в нашем случае один канал усиления будет нагружен стандартными 4 омами, раскачивая при этом сразу четыре саба. Поскольку 4 Ом — нагрузка стандартная для любого автомобильного усилителя мощности, то никаких потерь и приростов мощностных показателей в данном случае не произойдет. В нашем случае — это 100 ватт на канал, поровну поделенные на четыре 4-омных динамика.
Подводим итоги. Главное при построении подобных схем — не переусердствовать. Прежде всего в том, что касается минимальной нагрузки усилителя. Большинство современных аппаратов вполне справляются с 2-омными нагрузками. Однако это совсем не значит, что они будут работать и при 1 оме. Кроме того, на низких нагрузках снижается способность усилителя контролировать движение диффузора динамика, что чаще всего результируется в «размытом» басе.
Все три приведенных выше примера касались исключительно низкочастотного звена аудиокомплекса. С другой стороны, теоретически на одном двухканальном аппарате можно построить всю акустическую систему в автомобиле с мид-басами, среднечастотниками и твитерами. То есть с динамиками, играющими в разных областях частотного спектра. Следовательно придется задействовать пассивные кроссоверы. Здесь важно помнить, что их элементы — конденсаторы и индуктивности — должны быть согласованы с эквивалентным сопротивлением нагрузке данного канала усиления. Кроме того, фильтры сами привносят сопротивление. При этом чем дальше сигнал от полосы пропускания фильтров, тем больше сопротивление.
Изменение омности динамиков
Изменение омности в динамиках может потребоваться в нескольких случаях, если усилитель рассчитан на большое сопротивление или наоборот. понижать и повышать сопротивление нагрузки можно несколькими способами также можно использовать трансформатор или перемотку катушек, но эти методы не всегда уместны. два самых распространенных способа добиться нужной омности – это параллельное и последовательное подключение.
Последовательное соединение динамиков
Если мощность акустической системы больше мощности усилителя, то здесь необходимо повысить сопротивление. Для уменьшения мощности и изменения омности используют последовательное соединение колонок. Их фазируют следующим образом: производят подключения плюса одного динамика к минусу другого. В итоге получается уменьшенная мощность системы и увеличенное сопротивление. При последовательном соединении нельзя использовать колонки с разным сопротивлением, так как будет разная громкость.
Параллельное соединение динамиков
В случае параллельного соединения акустической системы на выходе пропорционально количеству динамиков возрастает мощность, и сопротивление нагрузки снижается. Количество громкоговорителей будет зависеть от характеристик усилителя (в большинстве случаев легко справляются с нагрузкой в 2 Ома) и мощности колонок. Есть аппаратура, которая будет справляться с нагрузкой и в 0,5 Ома. Если брать разнообразие колонок, то мощность может варьироваться от 10-100 Ватт.
Также существует последовательно-параллельное соединение, этот способ зачастую применяется для увеличения количества динамиков в автомобиле, происходит увеличение суммарной мощности акустической системы, а сопротивление нагрузке остается на допустимом уровне. Здесь на один канал усиления можно устанавливать несколько колонок, в допустимых пределах сопротивления нагрузки.
При соединении динамиков в любой последовательности всегда нужно учитывать минимальную нагрузку усилителя. Практически вся аппаратура справляется с нагрузкой в 2 Ома.
Реактивное сопротивление АС: с чем едят и что делать?
О том, что надпись «4 Ома» на шильдике АС вовсе не означает, что так оно и есть, слышали все. Данная статья написана для увеличения числа знающих, что из этого следует.
Входное сопротивление отдельно взятого динамика в оформлениях ЗЯ и ОЯ имеет чисто активный характер всего на двух частотах: механического (основного) и электромеханического резонансов. На всех остальных частотах полное сопротивление имеет реактивную составляющую, причём её модуль вблизи основного резонанса и на верхней границе рабочего диапазона может в разы превышать активное сопротивление и пренебрегать ею – бывает себе дороже. У двух- и трёхполосных АС, и в оформлениях ФИ и ПИ характеристика сложнее. Так, например, выглядит ЧХ сопротивления мощного 50-сантиметрового динамика в оформлении ФИ:
Вертикальная ось слева – в Омах, тонкая красная линия снизу – 4 Ома. Верхняя цветастая линия – участки с разным характером комплексного сопротивления АС.
Существует мнение, что индуктивность звуковой катушки – вещь реальная, проявляющая себя в полной мере, а реактивность вблизи частоты основного резонанса – типа виртуальная, не влияющая на подключённые устройства (фильтр или усилитель). Для проверки я проводил эксперимент (Чалов Денис довёл)). В результате оказалось, что реактивное сопротивление динамика 75 ГДН-1 является основной причиной горба в районе 80-100 Гц, взаимодействуя с деталями ФНЧ АС S-90. Но давайте послушаем умных людей.
Шкритек (см. литературу) приводит стандартный эквивалент нагрузки для проверки усилителей мощности (УМ):
Как видим, это эквивалент 6-омной АС, тип оформления – ЗАС с резонансной частотой около 50 Гц. Но что это? В схеме – живые катушка и конденсатор! Индуктивность звуковой катушки опущена, но всё же правильнее было бы добавить её последовательно с резистором 5,4 Ом. Вариант полной схемы эквивалента восьмиомного динамика от Селфа:
Первый и главный вывод: усилитель работает вовсе не на активную нагрузку, и все R в формулах надо менять на Z, комплексное сопротивление. Шкритек это давно сделал, я лишь приведу основные важные результаты. Увеличение пикового значения тока выходных транзисторов при работе на комплексную нагрузку – максимум в 5,6 раза:
Отала оценивает запас по пиковому значению в 6,6 раза «для наихудшего случая» (мой перевод с книги Селфа), а сам Селф рекомендует для дома как минимум двойной запас (2-3 раза). Отсюда растут ноги у схем, где по пять выходных транзисторов в параллель.
Второй вывод: комплексное сопротивление вблизи частоты основного резонанса динамика реально существует и влияет на характеристики подключенных устройств. В частности, горб АЧХ в НЧ звене тем больше, чем больше последовательная индуктивность в ФНЧ (в первую очередь) и чем больше конденсатор на землю после неё (влияние меньше), то есть, чем ближе частота среза ФНЧ к частоте основного резонанса ЗАС или ОЯ или к частоте верхнего горба ЧХ сопротивления ФИ. В двухполосных АС с частотой раздела выше 2 кГц эффект уменьшается до долей дБ и о нём можно забыть.
Третий вывод: при аварийных режимах типа щелчки коммутации в случае чрезмерно широкой полосы пропускания на ВЧ по входу, искрения или обрыва контактов АС запасённая в индуктивностях энергия может вызвать всплеск напряжения большого значения, выше допустимого для выходных транзисторов. Поэтому в усилителях для озвучивания часто включают два диода с шины выхода (после выходного развязывающего дросселя) на шины питания, которые в нормальном режиме под обратным напряжением и на работу не влияют. Не помешают они и домашнему.
Давайте посмотрим графики частотных характеристик (ЧХ) сопротивления разных АС.
S-30 (из Интернета). Имеем 4 зоны риска (показано красным).
Рассчитанная 15 АС-214 (доверительный интервал выше 200 Гц):
Весёлая получилась характеристика)
Рассчитанная S-50B (доверительный интервал выше 100 Гц):
Очевидно, что на ЧХ сопротивления при проектировании ЧиХали, благо, ГОСТ не был против! Кстати, западные стандарты – тоже.
Возьмём классику, S-90 без букв. Для упрощения я сделал её ЗАС с резонансной частотой около 35 Гц. Высота резонансного пика и крутизна скатов взяты приблизительно, выше 80 Гц – правда. Во всех дальнейших схемах трёхполосных АС в статье по умолчанию стоят схемы замещения динамиков, аналогичные данным. Схема для Мультисима:
Получаем частотную характеристику сопротивления:
Обратите внимание на провал при 6,5 кГц, вызванный «удачным» фильтром ВЧ полосы: там меньше 5 Ом активного сопротивления (при сопротивлении ВЧ динамика 15 Ом) при большой крутизне скатов. Теперь взгляните на совмещённые ЧХ сопротивления и АЧХ фильтров (масштаб по вертикали в децибелах, оранжевая линия – 86 дБ):
На пиках АЧХ фильтра имеем провалы Z-метровой характеристики, что вполне логично. Отсюда идея: пусть разделительные фильтры занимаются чем положено – разделением полос с минимальными выбросами АЧХ (и ФЧХ) при линейной суммарной Z-метровке, а коррекцией АЧХ пусть занимается параметрический эквалайзер, настроенный 1 раз по усреднённым в каналах проблемам в зоне прослушивания. Синтезируем схему такого чуда:
Схема монтажная, в Мультисим закладывалась с сопротивлениями катушек, конденсаторов и полными эквивалентными схемами динамиков. Его ЧХ сопротивления:
Оценим остаточное влияние реактивности. Разница фаз между напряжением и током при комплексной нагрузке:
где XL – реактивная, а RL – активная составляющая комплексного сопротивления нагрузки.
Увеличение тока приблизительно обратно пропорционально косинус фи. Максимум XL/RL около частоты 200 Гц. В первом приближении здесь работают активное сопротивление звуковой катушки и катушки 1,2mH (2,9+0,3=3,2 Ом) и индуктивное сопротивление катушки 1,2 мГн (1,5 Ом на 200 Гц) Расчёт даёт сдвиг фазы 25 градусов и увеличение тока на 10%. Получаем тех же 3,2*0,9=2,9 Ома, это и будет АКТИВНОЕ сопротивление для расчёта усилителя под такую схему АС.
Теперь микрофоном измеряем АЧХ и настраиваем параметрический эквалайзер. Если что не понравилось в фильтре – начинаем всё сначала. Сложно и непривычно? Тогда поступим иначе: рассчитываем фильтр с нужной АЧХ и изначально хорошей Z-метровой характеристикой или же дорабатываем уже имеющийся. Вот, например, ЧХ сопротивления АС с фильтрами 1-го порядка из статьи NIVAGA больше не ENYGMA.
Как-то даже на душе потеплело… Но большинство динамиков не годится под первый порядок фильтра. Тогда вот, например, характеристика АС с фильтрами 2-го порядка из той же статьи (красная линия):
А теперь добавим 5 деталей, выделенных зелёным (результат – синяя линия, график тот же):
Ура! Теперь смело можно заявить, что у нас АС имеет сопротивление 4 Ома (±20%) в диапазоне 20-1200 Гц, а его комплексный характер не потребует увеличения запаса по току коллектора выходного транзистора больше тех же +20%, так как отношение реактивной составляющей к активной во всём звуковом диапазоне невелико. Рассчитываем усилитель на активное сопротивление 3,2 Ома (если не предполагается работа на неизвестные АС, конечно), что позволит сэкономить энное количество транзисторов + радиаторов и/или улучшить показатели усилителя и (спать) слушать спокойно, ибо +20% это Вам не 5 раз! Итак, есть несколько вариантов не наступить на грабли реактивного сопротивления, и все они осуществимы. Если Вам удалось уменьшить реактивную составляющую до приемлемой величины, то – получите Ваши бонусы: 1. Меньше требования к толщине соединительных проводов, в т. ч., внутри АС и УМ. 2. Ниже требования к величине номиналов и расположению блокировочных конденсаторов по шинам питания. 3. В случае применения датчика тока (для цепи ЭМОС, ПОСТ для создания отрицательного выходного сопротивления УМ или создания в УМ режима источника тока) выходное напряжение датчика гораздо меньше зависит от частоты, а при работе от УМ с высоким выходным сопротивлением (ламповым или ИТУН) – меньше и плавнее изменения АЧХ. 4. Меньше требования к запасу по перегрузке блока питания. 5. Стабильный коэффициент демпфирования на максимальной мощности. 6. Сопротивление на ультразвуковых частотах стабильно 20 Ом (для последней схемы). 7. Убирается горб на АЧХ в НЧ звене.
Касательно бонуса №7. Привожу расчётные АЧХ ФНЧ типа S-90, оформление ЗАС, Fр=35 Гц. Схема фильтра:
Зелёный цвет – с последовательным контуром, красный – без него (подписан выброс, возникающий из-за отсутствия резистора последовательно с 110 мкФ, есть в огромном количестве фильтров, поскольку – «и так сойдёт»):
Если же усилитель уже имеется и рассчитан, к примеру, с тройным запасом, то теперь можно будет либо оставить его как есть (все искажения, связанные с режимами больших токов, уменьшатся), либо сократить число выходных транзисторов до одного (при этом искажения уменьшатся у предвыходных каскадов, а выходной и предвыходной станут шустрее за счёт уменьшения ёмкостей => появится больший запас по фазе общей ООС). Кстати, об искажениях. Предполагаю, что такое выражение как «такой-то УМ с такой-то АС играет хорошо, а с вот такой – плохо» может объясняться отсутствием запаса по току выходного каскада при работе на разные АС, у которых разные ЧХ сопротивления. Уважаемый А.Сырицо в статье «Работа УМЗЧ на комплексную нагрузку» выражает сходные мысли и приводит интереснейшую статистику по комплексному сопротивлению АС. Полезно сравнить нелинейные искажения готового усилителя при работе на активную нагрузку и на эквивалент громкоговорителя на разных частотах. Ведь все те 0,00…% измеряются НА РЕЗИСТОРАХ. Только не сожгите УМ.
Какие же значения перегрузок УМ по импульсному току и импульсной мощности для реальных схем АС?
Ну хорошо, RC-цепь поставить или сразу разработать фильтры с приятной ЧХ сопротивления на СЧ и ВЧ не очень сложно. Но последовательный контур на НЧ… Да, в небольшой корпус засунуть батарею в 300-500 мкФ и конский дроссель… Но если литров побольше + умеете снимать ЧХ сопротивления = можно пробовать Итак, начнём:
Общие выводы:
ЛИТЕРАТУРА:
46 комментариев: Реактивное сопротивление АС: с чем едят и что делать?
“Цобель” на весь диапазон!
А оно действительно нужно? Лично я так не думаю. Да и проблема “тугой” акустики и слабеньких (по току) усилителей не вчера возникла.