Как подлодки ориентируются под водой

Секреты «автономки». Как действуют российские АПЛ в дальних походах

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

МОСКВА, 22 мая — РИА Новости, Андрей Коц. Месяцами не видеть неба над головой и жить по выверенному до секунд распорядку, непрерывно ощущая незримое присутствие вероятного противника и колоссальный груз ответственности, — служба экипажей атомных подлодок считается одной из самых трудных и престижных в ВМФ России. В море эти плавучие города обычно действуют в отрыве от союзных сил. Их командиры вправе принимать решения, влияющие на геополитическую картину мира. О том, как российские АПЛ готовят к «автономкам» и о быте подводников, — в материале РИА Новости.

Отбор из лучших

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

«Моя рекордная «автономка» — более 90 суток под водой», — рассказывает РИА Новости капитан первого ранга в отставке Владимир Мамайкин, участник 13 боевых служб. Он ходил в море на торпедных атомоходах знаменитой 3-й дивизии подводных лодок Северного флота и командовал АПЛ К-462 с 1981-го по 1984-й. «В таких походах ты предоставлен сам себе — по сути, сам себе государство. В море могут возникнуть любые ситуации, и командир АПЛ вправе самостоятельно принимать решение, как действовать в той или иной обстановке», — продолжает подводник.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

После того как все возвращаются на борт, АПЛ покидает базу и погружается. Всплывает только через несколько месяцев — вернувшись из похода.

Плавучий город

Распорядок дня на атомоходе — стандартный для крупных боевых кораблей: две вахты в сутки. В каждой — три боевые смены по четыре часа. Быт на АПЛ налажен, как и в любой сухопутной воинской части. Есть дежурства, наряды, тренировки, учебные тревоги. Регулярно проводятся помывочные дни, когда матросы могут постираться и принять душ из забортной воды. Продуман и досуг: на многих атомоходах есть библиотеки, постоянно организуются различные соревнования, кинопоказы. На ракетном подводном крейсере стратегического назначения (РПКСН) «Дмитрий Донской» есть даже бассейн с сауной. С питанием тоже все неплохо, и хлеб всегда свежий — выпекают на корабельном камбузе.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Боевая служба на атомной подводной лодке действительно очень напоминает работу космонавтов на орбитальной станции. И там, и там люди длительное время находятся в замкнутом пространстве — нельзя выйти на улицу и подышать свежим воздухом. И в космосе, и под водой экипажам приходится рассчитывать исключительно на свои собственные силы.

Единственная «вольность», позволительная для экипажа подлодки, — подвсплыть для сеанса связи. В заранее оговоренные дни и в определенное время командир АПЛ дает приказ выставить антенну. Штаб выходит с ним на связь или не выходит, но график экипажем должен соблюдаться неукоснительно. В экстренной ситуации субмарина может подвсплыть когда угодно, чтобы передать важную информацию — на берегу сигнал принимают круглосуточно.

Встречи с противником

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

«В 1980-м я служил на АПЛ К-398 старпомом, — говорит Владимир Мамайкин. — Мы следили за американским подводным крейсером, шли за ним на малом ходу и на малой дистанции — всего два-три кабельтовых (370-550 метров). «Американец» нас не слышал и в какой-то момент сбавил скорость, двинувшись наперерез. Мы не успели среагировать и навалились на него бортом. Лодку сильно тряхнуло, развернуло на 50 градусов. Осмотрелись в отсеках и выдохнули — все было в порядке, никаких поломок. Американский крейсер тут же дал деру. Мы подвсплыли на перископную глубину, но в перископ ничего не увидели — море штормило. Думали, потеряли цель, однако почти сразу вновь поймали акустический контакт и еще несколько часов следили за «американцем»… Наши современные АПЛ, например проекта «Ясень», на порядок совершеннее тех, на которых мы служили в 1970-80-х. На них можно и на 30 кабельтовых уверенно держать акустический контакт с противником. Я уже старый морской волк, в дальних походах давным-давно не бывал. Но как же хочется подняться на капитанский мостик нового «Ясеня» и посмотреть, на что он способен».

Источник

Как лодки «видят» и «слышат» под водой?

Каждый из нас хотя бы раз видел настоящую моторную лодку или вёсельную шлюпку, парусную яхту или теплоход. Тем, кто живёт около больших рек или на морском берегу, это не в диковинку. А видел ли кто-нибудь «живьём» подводную лодку? Таких счастливчиков наберётся немного.

Вода во много раз плотнее воздуха и плохо пропускает свет. Даже в ясную солнечную погоду при полном штиле и чистой воде водолаз на глубине 100 метров будет видеть вокруг себя не дальше двух метров. Капитану или штурману подводного корабля такая дальность обзора ничего не даёт: в иллюминатор на глубине даже с прожектором дальше носа подводной лодки ничего не видно. Как тут быть? Ведь надо знать, что происходит вокруг, чтобы не наткнуться на подводную скалу или на другой корабль. На помощь подводникам пришёл звук. Вы, наверное, знаете, что некоторые животные ориентируются в пространстве при помощи звука, методом эхолокации.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Обычно используется звук высокой частоты, называемый ультразвуком. Летучие мыши, киты и дельфины издают различные звуки, а потом слушают, как сигнал отражается от окружающих предметов. Между посланным и отражённым звуком всегда проходит некоторое время, и животные понимают, на каком расстоянии и в каком направлении от них находится ктото или что-то. У них в мозгу возникает «звуковая» карта окружающего пространства. Человек таких способностей не имеет, поэтому людям пришлось изобрести специальный прибор — гидролокатор. Это устройство с помощью ультразвука исследует окружающее пространство в нужном секторе на расстоянии нескольких километров и через наушники обычным звуковым сигналом или на экране монитора информирует матроса-гидроакустика о различных подводных объектах.

Источник

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водойmasterok

Мастерок.жж.рф

Хочу все знать

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Подводная лодка может передвигаться как по поверхности воды, так и погружаться глубоко в недра мирового океана. При этом многим наверняка было бы интересно узнать, как ведет себя экипаж субмарины и какие меры он предпринимает, когда подводная лодка отказывается в морском шторме.

Может ли она в такой момент уйти под воду и если да, то как глубоко она должна это сделать?

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

В 1805 году известный ирландский гидрограф Фрэнсис Бофорт разработал и предложил для всеобщего использования эмпирическую шкалу, которая позволяла рассчитывать высоту волны, опираясь на значения скорости ветра. Первоначальная версия шкалы Бофорта оказалась не слишком-то удобной, точной и простой в использовании, а потому на протяжении последующих двух десятков лет ее создатель занимался активным процессом улучшения своего творения. Принята на вооружение в большинстве морских держав шкала Бофорта была только в 1830 году.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Шкала состояла из 17 баллов для обозначения грозности морских волн (или их полного отсутствия). Для большинства ситуаций в море (в том числе штормовых) нужно было только первые 12 значений шкалы. Баллы 13-17 были актуальны лишь для Тихого океана с его регулярными тайфунами. Система Бофорта позволяла рассчитывать скорость, величину и силу волны исходя из скорости ветра.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Так, 10 баллам по шкале Бофорта соответствует скорость ветра в 90-100 км/ч и высота волны в 12 метров. При таких условиях волна будет двигаться со скоростью 55 км/ч. Средняя длина волны составит 210 метров, а период прохождения волн будет равняться 14 секундам. Кроме того, любая волна распространяется циркуляционным образом от поверхности водной глади в ее недра, постепенно ослабевая. Полностью отсутствовать циркуляционное движение, создаваемое морской волной, будет на глубине равной от 0.5 длины этой волны. При 10 баллах – это значение составляет около 105 метров.

Таким образом и получается рассчитывать необходимую глубину погружения. В описанных условиях, подлодка должна будет «лечь» килем (нижней частью корпуса) на глубину в 120 метров, так как средняя высота боевых субмарин от киля до верхней точки мостика составляет около 15 метров.

Источник

Как и при помощи каких радиоволн осуществляется радиосвязь с подводными лодками на глубине

реклама

Радиоволны СНЧ имеют несколько худшее распространение, но и при этом антенные системы передающих станций имеют гораздо меньшие размеры.

При реализации связи на сверхдлинных радиоволнах возникают большие технические трудности, и сложнее всего создать передатчик и передающую антенную систему из-за очень большой длинны волны, которая, например, при частоте 82 Гц. составляет 3658 км. Построить эффективную антенную систему, размеры которой сопоставимы с такими геометрическими размерами волны, сами понимаете, не представляется возможным. И инженеры пошли на хитрость, они закопали глубоко в землю, на расстоянии друг от друга в 40 – 50 км. два длинных электрода, подключенных к выходу передатчика. При этом линии протекания тока между электродами проникали в землю на большую глубину и использовали эту часть земли, как громадную антенну, получалась, что из самой земли в морские и океанские воды излучался сигнал СНЧ, который преодолевая толщу вод, достигал антенн подводных лодок.

реклама

Но и такая техническая реализация антенной системы очень сложна, и строить подобные сверхдлинноволновые станции связи с подводными лодками может себе позволить далеко не каждое государство. Передатчик этих станций оказался также очень сложным. Из-за генерации СНЧ электромагнитных колебаний он имеет катастрофически низкий коэффициент полезного действия (КПД), что накладывает очень большие технические трудности при его создании. Кроме того, из-за низкого КПД антенной системы, необходима очень большая мощность генерируемого сигнала. Это приводит к громадным размерам передатчика и большому энергопотреблению. В результате получается, что на один излученный ватт электромагнитной энергии, передатчик потребляет 100 кВт. электроэнергии. И обеспечивать этот передатчик электроэнергией должна целая электростанция. Это первый серьезный недостаток этого вида связи.

Поскольку на борту подводной лодки невозможно разместить подобный громадный передатчик, и создать такую передающую антенную систему, то сами понимаете, что связь будет только односторонней, команды могут передаваться от наземного центра управления на подводную лодку, а наоборот нет. Это второй серьезный недостаток.

Скорость передачи данных такой системы связи крайне мала, всего несколько знаков в минуту. Это третий серьезный недостаток. Для выхода из этой ситуации передаются только короткие условные сигналы, которые идентифицируются с отдаваемыми командами по соответствующей таблице, которая выдается команде перед отплытием.

реклама

На подводной лодке прием сигнала организуется достаточно просто, выпускается длинный трос – антенна, длинна которой может достигать нескольких километров, и может подвсплывать на меньшую глубину. Прием сигнала может происходить и при движении подводной лодки.

Но при всех недостатках этой связи, она обеспечивает скрытную, надежную, устойчивую связь с подводной лодкой находящейся на большой глубине, в любой точке земного шара, в любое время, в любых погодных условиях.

Если подводная лодка находится на небольшой глубине, то у нее появляется большое количество других каналов связи, в других частотных диапазонах, использующихся для наземной связи, например, через поднятую антенну с перископной глубины или с помощью всплывающих радиобуев. Связь между подводной лодкой и радиобуем реализуется при помощи кабеля или гидроакустического канала.

реклама

Но этим она может себя обнаружить. То есть эти каналы связи являются демаскирующими факторами для подводной лодки. И самым надежным каналом связи, с точки зрения скрытности, является радиосвязь на сверхдлинных радиоволнах. Подобная станция связи «ЗЕВС», работающая на частоте 82 Герца используется на Кольском полуострове.

Надеюсь, эта информация была для вас интересна. Пишите в комментариях, какие вы еще знаете виды связи с подводными лодками, находящимися на большой глубине.

Источник

datonko

блог Данила Тонкопия

Как связаться с подводной лодкой в подводном положении?

Мистика низких частот. Как связаться с подводной лодкой?

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Что за нелепый вопрос? «Как связаться с подводной лодкой»

Взять спутниковый телефон и позвонить. Коммерческие системы спутниковой связи, такие как INMARSAT или «Иридиум», позволяют, не выходя из московского офиса, дозвониться до Антарктиды. Единственный минус – высокая стоимость звонка, впрочем, у Минобороны и Роскосмоса, наверняка, действуют внутренние «корпоративные программы» с солидными скидками…

Действительно, в век Интернета, «Глонасс» и беспроводных систем передачи данных проблема связи с подводными лодками может показаться бессмысленной и не очень остроумной шуткой – какие здесь могут быть проблемы, спустя 120 лет после изобретения радио?

Первый способ довольно логичен и прост, в то же время он весьма сложен в реализации на практике, а дальность действия такой системы оставляет желать лучшего. Речь идет о звукоподводной связи – акустические волны, в отличие от электромагнитных, распространяются в морской среде гораздо лучше, чем по воздуху – скорость звука на глубине 100 метров составляет 1468 м/с!

Конечно, можно проложить по дну сотни и тысячи километров кабелей – к гидрофонам, установленным в районах наиболее вероятного нахождения стратегических ракетоносцев и многоцелевых атомных подлодок… Но существует ли иное, более надежное и эффективное решение?

Der Goliath. Страх высоты

Обойти законы природы невозможно, но в каждом из правил есть свои исключения. Морская гладь не прозрачна для длинных, средних, коротких и ультракоротких волн. В то же время, сверхдлинные волны, отражаясь от ионосферы, без труда распространяются за горизонтом на тысячи километров и способны проникать в глубины океанов.

Выход найден – система связи на сверхдлинных волнах. И нетривиальная проблема связи с подводными лодками решена!

Но почему все радиолюбители и эксперты в области радиотехники сидят с таким унылым выражением лиц?

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Сверхдлинные волны – радиоволны с длиной волны свыше 10 километров. В данном случае, нас интересует диапазон очень низких частот (ОНЧ) в пределах от 3 до 30 кГц, т.н. «мириаметровые волны». Даже не пытайтесь искать этот диапазон на ваших радиоприемниках – для работы со сверхдлинными волнами нужны антенны потрясающих размеров, длиной во многие километры – ни одна из гражданских радиостанций не работает в диапазоне «мириаметровых волн».

Чудовищные габариты антенн – вот главная загвоздка на пути создания ОНЧ-радиостанций.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Вид «Голиафа» потрясает воображение: передающая ОНЧ-антенна состоит из трех зонтичных частей, смонтированных вокруг трех центральных опор высотой 210 метров, углы антенны закреплены на пятнадцати решетчатых мачтах высотой 170 метров. Каждое антенное полотно, в свою очередь, состоит из шести правильных треугольников со стороной 400 м и представляет из себя систему стальных тросов в подвижной алюминиевой оболочке. Натяжение антенного полотна производится 7-тонными противовесами.

Монтаж грандиозной радиостанции в пригороде г. Кальбе завершился весной 1943 года. Два года «Голиаф» служил в интересах Кригсмарине, координируя действия «волчьих стай» на просторах Атлантики, до тех пор, пока в апреле 1945 «объект» не был захвачен американскими войсками. Спустя некоторое время местность перешла под управление советской администрации – станцию немедленно разобрали и вывезли в СССР.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Высоченные мачты «Голиафа» взметнулись ввысь в Кстовском районе Нижегородской области, у поселка Дружный – именно отсюда ведет свое вещание трофейный супер-передатчик. Решение о восстановлении «Голиафа» было принято еще в далеком 1949 году, первый выход в эфир состоялся 27 декабря 1952 года. И вот, уже более 60 лет легендарный «Голиаф» стоит на страже нашего Отечества, обеспечивая связь с идущими под водой подлодками ВМФ, одновременно являясь передатчиком службы точного времени «Бета».

Впечатленные возможностями «Голиафа», советские специалисты не стали останавливаться на достигнутом и развили немецкие идеи. В 1964 году в 7 километрах от города Вилейка (Республика Беларусь) была построена новая, еще более грандиозная радиостанция, более известная, как 43-й узел связи ВМФ.

На сегодняшний день, ОНЧ-радиостанция под Вилейкой, наряду с космодромом Байконур, военно-морской базой в Севастополе, базами на Кавказе и в Средней Азии, входит в число действующих зарубежных военных объектов Российской Федерации. На узле связи «Вилейка» служат порядка 300 офицеров и мичманов ВМФ РФ, не считая вольнонаемных граждан Белоруссии. Юридически, объект не имеет статуса военной базы, а территория радиостанции передана России в безвозмездное пользование до 2020 года.

Главной достопримечательностью 43-го узла связи ВМФ РФ, безусловно, является ОНЧ-радиопередатчик «Антей» (RJH69), созданный по образу и подобию немецкого «Голиафа». Новая станция гораздо крупнее и совершеннее трофейной немецкой аппаратуры: высота центральных опор увеличилась до 305 м, высота боковых решетчатых мачт достигла 270 метров. Помимо передающих антенн, на территории площадью 650 га расположен ряд технических строений, в том числе высокозащищенный подземный бункер.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

43-й узел связи ВМФ РФ обеспечивает связь с атомными лодками, несущими боевое дежурство в акваториях Атлантического, Индийского и северной части Тихого океана. Помимо своих основных функций, гигантский антенный комплекс может быть использован в интересах ВВС, РВСН, Космических войск РФ, также «Антей» применяется для ведения радиотехнической разведки и РЭБ и входит в число передатчиков службы точного времени «Бета».

Мощные радиопередатчики «Голиаф» и «Антей» обеспечивают надежную связь на сверхдлинных волнах в Северном полушарии и на большей площади Южного полушария Земли. Но как быть, если районы боевого патрулирования подлодок сместятся в южную Атлантику или в экваториальные широты Тихого океана?

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Созданный в конце 1970-х годов на базе противолодочного самолета Ту-142 (который, в свою очередь, является модификацией стратегического бомбардировщика Т-95), «Орел» отличается от прародителя отсутствием поисковой аппаратуры – взамен на месте первого грузового отсека находится бобина с буксируемой 8600-метровой антенной ОНЧ-радиопередатчика «Фрегат». Помимо сверхдлинноволновой станции, на борту Ту-142МР имеется комплекс аппаратуры связи для работы в обычных диапазонах радиоволн (при этом самолет способен исполнять функции мощного КВ-ретранслятора даже без подъема в воздух).
Известно, что по состоянию на начало 2000-х годов несколько машин данного типа все еще числились в составе 3-ей эскадрильи 568-го гв. смешанного авиаполка авиации Тихоокеанского флота.

Разумеется, использование самолетов-ретрансляторов есть не более чем вынужденная (резервная) полумера – в случае реального конфликта Ту-142МР может быть легко перехвачен вражеской авиацией, кроме того, кружащий в определенном квадрате самолет демаскирует подводный ракетоносец и явственно указывает противнику положение субмарины.

Морякам требовалось исключительно надежное средство для своевременного доведения приказов военно-политического руководства страны до командиров атомных подводных лодок, находящихся на боевом патрулировании в любом уголке Мирового океана. В отличие от сверхдлинных волн, проникающих в толщу воды всего на пару десятков метров, новая система связи должна обеспечить надежный прием экстренных сообщений на глубинах 100 и более метров.

Да…перед связистами возникла весьма и весьма нетривиальная техническая задача.

…В начале 1990-х годов ученые Стэнфордского университета (Калифорния) опубликовали ряд интригующих заявлений, касающихся исследований в области радиотехники и радиопередачи. Американцы стали свидетелями необычного явления – научная радиоаппаратура, размещенная на всех континентах Земли регулярно, в одно и то же время, фиксирует странные повторяющиеся сигналы на частоте 82 Гц (или, в более привычном для нас формате 0,000082 МГц). Указанная частота относится к диапазону крайне низких частот (КНЧ), в этом случае длина чудовищной волны составляет 3658,5 км (четверть диаметра Земли).

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Скорость передачи за один сеанс – три знака каждые 5-15 минут. Сигналы поступают прямо из земной коры – у исследователей возникает мистическое ощущение, будто бы сама планета разговаривает с ними.
Мистика – удел средневековых мракобесов, а продвинутые янки сразу догадались, что имеют дело с невероятным КНЧ-передатчиком, размещенным где-то на другом конце Земли. Где? Ясно где – в России. Похоже, эти безумные русские «закоротили» целиком всю планету, используя её в качестве гигантской антенны для передачи зашифрованных сообщений.

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

Секретный объект «ЗЕВС» расположен в 18 километрах южнее военного аэродрома Североморск-3 (Кольский полуостров). На карте Google Maps хорошо видны две просеки (по диагонали), протянувшиеся через лесотундру на два десятка километров (ряд интернет-источников указывает длину линий в 30 и даже в 60 км), кроме того заметны технические задания, сооружения, подъездные пути и дополнительная 10-километровая просека к западу от двух основных линий.

Просеки с «фидерами» (рыбаки сразу догадаются, о чем идет речь), иногда ошибочно принимают за антенны. На самом деле это два гигантских «электрода» через которые прогоняют электрический разряд мощностью в 30 МВт. Антенной является сама планета Земля.

Выбор данного места для установки системы объяснется низкой удельной проводимостью здешнего грунта – при глубине контактных скважин 2-3 километра, электрические импульсы проникают глубоко в недра Земли, пронизывая планету насквозь. Импульсы гигантского КНЧ-генератора отчетливо фиксируются даже научными станциями в Антарктиде.

Представленная схема не лишена своих недостатков – громоздкие размеры и чрезвычайно низкий КПД. Несмотря на колоссальную мощность передатчика, мощность выходного сигнала составляет считанные Ватты. Кроме того, прием столь длинных волн также влечет за собой немалые технические сложности.

Прием сигналов «Зевса» осуществляется подлодками на ходу на глубине до 200 метров на буксируемую антенну длиной около одного километра. Ввиду чрезвычайно низкой скорости передачи данных (один байт за несколько минут), система «ЗЕВС» очевидно используется для передачи простейших закодированных сообщений, к примеру: «Подняться к поверхности (выпустить радиобуй) и прослушать сообщение по спутниковой связи».

Как подлодки ориентируются под водой. Смотреть фото Как подлодки ориентируются под водой. Смотреть картинку Как подлодки ориентируются под водой. Картинка про Как подлодки ориентируются под водой. Фото Как подлодки ориентируются под водой

В 1977-1984 годах проект был реализован в менее абсурдной форме в виде системы Seafarer («Мореплаватель»), чьи антенны располагались в местечке Клэм Лэйк (шт. Висконсин) и на базе ВВС США «Сойер» (шт. Мичиган). Рабочая частота американской КНЧ-установки – 76 Гц (длина волны 3947,4 км). Мощность передатчика Seafarer – 3 МВт. Система была снята с боевого дежурства в 2004 году.

В настоящее время перспективным направлением для решения проблемы связи с подводными лодками является применениелазеров сине-зеленого спектра (0,42-0,53 мкм), чье излучение с наименьшими потерями преодолевает водную среду и проникает на глубину до 300 метров. Помимо очевидный трудностей с точным позиционированием луча, «камнем преткновения» данной схемы является высокая потребная мощность излучателя. Первый вариант предусматривает использование спутников-ретрансляторов с крупноразмерными отражающими рефлеткторами. Вариант без ретранслятора предусматривает наличие на орбите мощного источника энергии – для питания лазера мощностью 10 Вт потребуется энергоустановка с мощностью выше на два порядка.

В заключении стоит отметить, что отечественный Военно-Морской Флот – один из двух флотов в мире, обладающий полным комплектом морских ядерных сил. Помимо достаточного количества носителей, ракет и боевых блоков, в нашей стране, проводились серьезные исследования в области создания систем связи с подводными лодками, без которых морские СЯС утратили бы свое зловещее значение.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *