Как подобрать теплообменник для гвс
Расчёт и Подбор Теплообменника ГВС
(горячего водоснабжения)
Расчёт для ГВС парал. схемы
Расчёт для Отопления
Расчёт для ГВС двухступ. схемы
Устройство и конструкция
Установка и подключение
Данный online расчёт теплообменника предназначен для формирования запроса на подбор теплообменного аппарата и отправки его производителям пластинчатых теплообменников, разумеется при вашем желании.
Расчёт теплообменника
При расчёте пластинчатого теплообменника пренебрегают незначительными тепловыми потерями с его корпуса и считают, что всё тепло отданное греющим теплоносителем передаётся нагреваемой воде. Поэтому между греющим и нагреваемым контуром должен соблюдаться тепловой баланс.
Количество тепла полученное при подстановке в формулу параметров греющего контура, должно равняться количеству тепла полученному при подстановке параметров нагреваемого контура.
Q [кВт] = 1.163 · G [т/ч] · dt [°C]
Подбор теплообменника
Каждый производитель теплообменных аппаратов использует пластины уникальных конфигураций, поэтому не существует единой универсальной методики расчёта пластинчатых теплообменников, а подбор выполняют на специальном программном обеспечении.
Нам же необходимо лишь оформить запрос и отправить его производителю пластинчатых теплообменных аппаратов, что и делает данный расчёт.
Температурный режим и точка излома
Наличие систем децентрализованного подогрева воды для бытового горячего водоснабжения в тепловых сетях накладывает на их температурные режимы обязательства по поддержанию температуры воды в подающем трубопроводе выше температуры горячей воды на 10-15°C, обычно это 65-70°C.
Таким образом в тепловых сетях работающих по температурному графику и снижающих температуру воды в подающем трубопроводе при повышении температуры наружного воздуха, всегда есть так называемая «точка излома» в которой для систем отопления можно было бы уже подавать и более холодную воду, но вода подаётся с температурой 65°C, чтобы ей можно было нагреть горячую воду для системы горячего водоснабжения. Подобный температурный режим при отсутствии регулирования влечёт за собой некоторый перетоп в системе отопления, но зато избавляет тепловую сеть от обязательств по централизованному подогреву и транспортировке горячей воды для системы ГВС.
Поэтому в греющем контуре температуру воды на входе в теплообменник принимают 65°C, а на выходе задаются температурой 30°C.
В нагреваемом контуре задаются темературой 5°C на входе в теплообменник и 55°C на выходе из него.
Схемы подключения
Существует две основные схемы установки теплообменных аппаратов в системе горячего водоснабжения, это двухступенчатая смешанная и параллельная.
Двухступенчатые смешанные схемы используют в системах с централизованным теплоснабжением для первичного подогрева воды поступающей в систему горячего водоснабжения водой вышедшей из системы отопления. Расчёт теплообменника для двухступенчатой смешанной схемы подключения системы горячего водоснабжения.
Параллельные схемы подключения используют, как в современных системах с централизованным теплоснабжением, так и в системах с автономными источниками тепла. Данный расчёт и представлен на этой странице.
Как подобрать теплообменник
В процессе строительства, ремонта или модернизации системы отопления, вентиляции и горячего водоснабжения многим приходится сталкиваться с таким видом оборудования как теплообменные аппараты. Чтобы правильно подобрать устройство и купить пластинчатый теплообменник в СПб с оптимальными характеристиками, необходимо иметь базовые представления о принципах функционирования и основных параметрах данного оборудования.
Теплообменник представляет собой установку, в рабочем блоке которого осуществляется теплообмен между средами различной температуры. Среды (теплоноситель и теплопотребитель) разделены тонкими стенами труб или пластинами, если речь идет о пластинчатом теплообменнике (ПТ). За счет изменения площади теплообмена меняется количество тепловой энергии, которую нагревающая среда передает нагреваемой.
Сфера применения теплообменников чрезвычайно обширна: они используются в системах отопления, горячего водоснабжения, при монтаже систем охлаждения и подогрева бассейнов. С помощью данных установок инженерам удается реализовать эффективные современные решения не только на крупных предприятиях, но и в многоэтажных жилых домах, частных коттеджах и в квартирах. В промышленности это оборудование широко применяется в машиностроении, при производстве пищевых продуктов, в фармацевтической отрасли.
Зная базовые характеристики и принципы подбора теплообменных установок, можно обеспечить высокую эффективность работы данного оборудования и избежать излишних расходов. Если есть сомнения в выборе, то правильным решением будет получение консультации у специалистов компании, занимающейся поставками данного оборудования, к примеру – менеджеров ООО «Сервис-ПТО». Они не только выполнят необходимые расчеты и подберут подходящее оборудование, но и предоставят информационную и сервисную поддержку в процессе эксплуатации.
Определение задачи
Первый этап при подборе теплообменника – определение задач, которые с его помощью предстоит решить. Так как главная функция теплообменника – передача тепла от одной среды к другой, нужно определиться, что требуется сделать – нагреть или охладить рабочую среду. Также важно знать, где будет устанавливаться теплообменник – к примеру, требуется теплообменник для бассейна, монтажа системы ГВС в коттедже, системы отопления, вентиляции или для других технологических процессов. Определившись с назначением и местом расположения, можно приступать к подбору основных характеристик данного оборудования.
Если подбирается теплообменник для системы ГВС, нужно определиться с количеством смесителей и необходимой температурой подачи (включая возможность перехода на «летний» режим работы) и расходы жидкостей, которые необходимо нагреть или охладить. При использовании теплообменника для холодоснабжения потребуется знать рабочие температуры, чтобы заранее правильно рассчитать мощность оборудования. При монтаже вентиляционной системы и системы отопления также потребуется знать мощность системы и температуру подачи теплоносителя.
Способы подбора теплообменника
Существует несколько вариантов подбора теплообменника:
Необходимые характеристики
Параметры и необходимые характеристики зависят от типа теплообменника. Чаще всего используются поверхностные теплообменники: в них не происходит смешения сред. Среди них выделяют регенеративные и рекуперативные установки (в зависимости от направления потока теплоносителя).
Также в зависимости от конструктивных особенностей выделяют теплообменники с плоской поверхностью (пластинчатые теплообменники, спиральные) и трубчатые (кожухотрубные, змеевиковые, «труба в трубе»).
Ключевыми характеристиками теплообменника, независимо от его типа, считаются:
Данные для расчета
Для выбора теплообменника необходимо знать:
Остановимся подробнее на наиболее важных данных.
Тип среды
В теплообменниках могут использоваться следующие виды промышленных теплоносителей:
Выбор рабочей среды зависит от ряда факторов:
Максимальная рабочая температура
Теплоноситель поступает в теплообменник, отдает часть своего тепла среде-потребителю, после чего выходит из теплообменного аппарата с уже изменившейся температурой. Важно знать и температуру подаваемого теплоносителя, и необходимую температуру нагрева/охлаждения среды-потребителя.
Важно понимать, что чем выше рабочая температура внутри теплообменного аппарата, тем более жесткими должны быть требования к материалам, используемым для его изготовления, и к конструкции теплообменника.
Максимальное рабочее давление
Как и в случае с рабочей температурой, чем выше внутри теплообменника давление, тем жестче требования к его конструкционным особенностям и используемым при проектировании материалам. Теплообменники, рассчитанные на работу под высоким давлением, обычно стоят дороже.
Расчет
Опираясь на данные, полученные при определении технических условий эксплуатации, производится расчет теплообменника. Существует несколько вариантов данного расчета, каждый из которых подходит для конкретных целей и задач:
Подбор теплообменника
Правильный подбор теплообменника возможен только после получения всей необходимой вводной информации, определения характеристик тепловой среды и системы, к которой будет подключаться оборудование, включая скорость движения теплоносителя, диаметр труб в системе, площадь теплообмена и пр. Используя указанные сведения, следует произвести расчеты, которые и позволят подобрать оптимальную модель теплообменного аппарата и производителя. Это может быть оборудование таких известных марок как «Ридан», «Этра», «Alfa-Laval», «Tranter», «GEA» и пр.
Выводы
Для того чтобы не ошибиться с выбором теплообменника, подбор данного оборудования целесообразно доверять специалистам, которые используют современные версии ПО и имеют представление об эксплуатационных характеристиках каждой модели. Это позволит обеспечить длительную и безаварийную работу теплообменника при минимальных затратах на его обслуживание. Установку теплообменных установок также следует доверять профессионалам: в противном случае при нарушении технологий даже правильно подобранное и высококачественное оборудование не будет работать корректно.
Как подобрать теплообменник
На правах рекламы
И если профессиональные монтажники представляют себе подобные устройства и возможности их использования в достаточной мере, то для большинства обывателей теплообменник – это что-то металлическое, расположенное внутри котла, что греет воду. Вместе с тем сфера применения данных устройств очень обширна.
Прежде всего, теплообменник представляет собой оборудование, в рабочем блоке которого налажен теплообмен между элементами, обычно это жидкости с различными температурами. В теплообменнике две среды разделяют только тонкие стенки труб или пластин с высокой теплопроводностью. Чем выше площадь такого контакта, тем больше тепла успеет перейти от более нагретой жидкости к холодной. По смыслу теплообменник всегда поточный, хоть сами устройства между собой могут существенно отличаться объемом камер и секций для перекачки двух сред.
Теплообменники применяют в системах отопления, системах охлаждения, для обогрева бассейнов, в различных отраслях: машиностроении, химической промышленности, фармацевтике и пищевом производстве и т.д.
Вместе с тем при помощи данных устройств можно реализовать весьма эффективные инженерные решения в части отопления и горячего водоснабжения не только на крупных промышленных объектах, но и в частных домах, и даже в квартирах. И для этого нет необходимости самостоятельно изобретать велосипед из подручных средств – выпускаемый сегодня производителями ассортимент теплообменников в состоянии обеспечить решение любой бытовой задачи.
Возникает лишь один вопрос: как правильно подобрать необходимое и отвечающее именно вашим задачам оборудование и при этом не переплатить.
При выборе теплообменника нужно учитывать массу параметров, разобраться в значении которых обывателю порой просто не под силу. Поэтому выбор лучше доверить профессионалам, которые выполнят расчет, подберут необходимое оборудование и предоставят комплексную информационную поддержку.
Одним из крупнейших игроков на рынке теплообменников является компания «Комплексное снабжение», которая не только объединяет несколько десятков мировых брендов, но и имеет собственное производство подобного оборудования под торговой маркой «КС», для максимального удовлетворения запросов покупателей.
Инженеры компании по вашему запросу осуществят качественный расчет именно для вашего объекта и предложат оптимальный вариант по соотношению «цена-качество». При этом покупателю, оформляя заказ, не придется тратить много времени на заполнение непонятных опросных листов еще более непонятными показателями, как это зачастую бывает в других компаниях.
Под конкретный технологический процесс специалисты подберут определенный тип теплообменника с учетом технических характеристик и рабочих параметров. Не менее важен и материал, из которого изготавливают теплопередающие поверхности между теплоносителями, чтобы обеспечить надежную и долговечную работу.
На сегодняшний день наиболее совершенными устройствами являются пластинчатые теплообменники в разборном и паяном исполнении. Данные приборы являются универсальными, весьма компактными и отвечают высоким показателям энергоэффективности.
Каждый из названных типов применяется в зависимости от конкретной задачи.
Например, для частных домов и коттеджей чаще применяются паяные теплообменники. Их используют в системах теплого пола, для организации горячего водоснабжения, отопления теплиц, веранд и пешеходных дорожек. В многоквартирных жилых домах, в основном, используются пластинчатые разборные теплообменники (как в тепловых пунктах, так и по отдельности), что позволяет сократить издержки на потребление тепловой энергии.
Клиент обратился с просьбой подобрать теплообменник для непостоянного отопления веранды площадью 100 метров квадратных и высотой потолка 3 метра. Установленный в доме газовый котел мощностью 35 кВт работает по температурному графику 95/70. Согласно расчету специалистов «Комплексного снабжения» в качестве оптимального варианта был выбран паяный теплообменник KAORI Е40-26, с залитой в отопительный контур незамерзающей жидкостью на основе пропилен-гликоля. Система обеспечивает температуру теплоносителя на выходе 80 градусов, на входе – 60. Когда нет необходимости отапливать веранду, клиенту достаточно просто выключить насос контура.
Пластинчатые теплообменники за счет своей конструктивной особенности имеют ряд превосходных потребительских характеристик:
Заказчик поставил задачу подобрать теплообменник для организации отопления коттеджа площадью 152 квадратных метра со стандартной высотой потолков. Температура теплоносителя (греющего контура) от ТЭЦ – 120 градусов на входе в теплообменник, 70 – на выходе. Требовалось рассчитать теплообменник так, чтобы на выходе из теплообменника (нагреваемый контур) получить 90 градусов. Для данного проекта специалисты «Комплексного снабжения» предложили пластинчатый разборный теплообменник КС03.
По каким параметрам осуществляется подбор теплообменника?
И это далеко не полный перечень нюансов, учитываемых при выборе теплообменников. Очевидно, что человеку, не являющемуся профессионалом в данном вопросе, купить теплообменник самостоятельно и сделать корректный выбор будет крайне сложно. В таких ситуациях на помощь придут специалисты компании «Комплексное снабжение». Достаточно отправить заявку на fhouse@sn22.ru, и вы получите качественный расчет именно для вашего объекта с предложением оптимального варианта по соотношению «цена-качество».
Общие принципы устройства схем теплоснабжения
Система теплоснабжения представляет собой систему транспортировки тепловой энергии (в виде нагретой воды или пара) от источника тепловой энергии к ее потребителю.
Система теплоснабжения в основном состоит из трех частей: источник тепла, потребитель тепла, тепловая сеть — служащая для транспортировки тепла от источника к потребителю.
Роль элементов схемы:
Температурные графики
В нашей стране принято качественное регулирование отпуска теплоты потребителям. Т. е. не изменяя расход теплоносителя через теплопотребляющую систему, изменяется разность температур на входе и на выходе системы.
Это достигается изменением температуры в подающем трубопроводе в зависимости от температуры наружного воздуха. Чем ниже температура наружного воздуха, тем выше температура в подающем трубопроводе. Соответственно температура обратного трубопровода также изменяется по этой зависимости. И все системы потребляющие тепло проектируются с учетом этих требований.
Графики зависимости температур теплоносителя в подающем и обратном трубопроводе называются температурным графиком системы теплоснабжения.
Температурный график устанавливается источником теплоснабжения в зависимости от его мощности, требований тепловых сетей, требований потребителей. Температурные графики называются по максимальным температурам в подающем и обратном трубопроводах: 150/70, 95/70 …
Срезка графика в верхней части — когда у котельной не хватает мощности.
Срезка графика в нижней части — для обеспечения работоспособности систем ГВС.
Если требуемую температуру в подающем трубопроводе обеспечивает источник тепла, то требуемую температуру в обратном трубопроводе обеспечивает потребитель тепла своей теплопотребляющей системой. Если происходит завышение температуры обратной воды от потребителя, то это означает неудовлетворительную работу его системы и влечет за собой штрафы т. к. приводит к ухудшению работы источника тепла. При этом снижается его КПД. Поэтому существуют специальные контролирующие организации, которые отслеживают, чтобы теплопотребляющие системы потребителей выдавали температуру обратной воды по температурному графику или ниже. Однако в некоторых случаях подобное завышение допускается, напр. при установке отопительных теплообменников.
График 150/70 позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производят понижение графика, например на 95/70. Понижение производится установкой теплообменника либо подмесом обратной воды в подающий трубопровод.
Гидравлика тепловых сетей
Циркуляция воды в системах теплоснабжения производится сетевыми насосами на котельных и тепловых пунктах. Так как протяженность трасс достаточно велика то разность давления в подающем и обратном трубопроводах, которую создает насос, уменьшается с удалением от насоса.
Из рисунка видно, что для наиболее удаленного потребителя самый малый располагаемый перепад давления. Т. е. для нормальной работы его теплопотребляющих систем необходимо чтобы они имели самое малое гидравлическое сопротивление для обеспечения требуемого расхода воды через них.
Расчет пластинчатых теплообменников для систем отопления
Приготовление отопительной воды может происходить путем нагрева в теплообменнике.
Особенностью расчета теплообменника для системы отопления является завышенная температура обратной воды по греющей стороне. Это допускается специально т. к. любой поверхностный теплообменник принципиально не может охладить обратную воду до температуры графика, если по нагреваемой стороне на вход в теплообменник поступает вода с температурой графика. Обычно допускается разница 5—15°С.
Расчет пластинчатых теплообменников для систем ГВС
Расчетная нагрузка для систем ГВС определяется исходя из наличия на объекте, где устанавливаются теплообменники аккумуляторных баков.
При отсутствии баков расчет пластинчатых теплообменников производится на максимальную нагрузку. Т. е. теплообменники должны обеспечивать нагрев воды и при максимальном водоразборе.
При наличии аккумуляторных баков пластинчатые теплообменники рассчитываются на среднечасовую нагрузку. Аккумуляторные баки пополняются постоянно и компенсируют пиковый водоразбор. Теплообменники должны обеспечивать только подпитку баков.
Соотношение максимальной и среднечасовой нагрузок достигает в некоторых случаях 4—5 раз.
Обращаем Ваше внимание, что расчет пластинчатых теплообменников удобно производить в собственной расчетной программе «Ридан».
Расчет теплообменника пластинчатого
Расчет пластинчатого теплообменника – это процесс технических расчетов, предназначенный для поиска желаемого решения в теплоснабжении и его осуществления.
Данные теплообменника, которые нужны для технического расчета:
Для расчета данных также понадобятся:
Подробнее об исходных данных для расчета
Подбор и расчет стоимости теплообменника удобным для вас способом
Получить консультацию
Рассчитаем по параметрам
Делаем расчёт точно и профессионально, без всяких манипуляций
Есть готовый расчет теплообменника?
Рассчитаем стоимость по номеру расчета, серийному номеру, расчетному листу, спецификации, по шильдику теплообменника
Откуда взять расчетные данные для ПТО?
Расчетные данные (нагрузки, давления, температурные графики) выдаются теплоснабжающими организациями (тепловыми сетями, котельными) в виде пояснительных записок, Технических условий (ТУ).
Также эти данные вы можете взять из договора с теплоснабжающей организацией, или из проекта модернизации или переоборудования ИТП, УУТО. Если у вас остались вопросы по данным для расчета, то можно обратиться к менеджеру за консультацией.
ОСТАВЬТЕ ЗАПРОС
и наш специалист поможет подобрать оборудование
Виды технического расчета теплообменного оборудования
Тепловой расчет
Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.
Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.
Давайте рассмотрим пример общего расчета.
В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.
Q – количество теплоты передаваемое или принимаемое теплоносителем [Вт],
Gг,х – расход горячего и холодного теплоносителей [кг/ч];
сг,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C];
При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:
r – теплота конденсации [Дж/кг];
сп,к – удельные теплоемкости пара и конденсата [Дж/кг·град];
tк – температура конденсата на выходе из аппарата [°C].
Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:
Благодаря данной формуле определяем расход теплоносителя:
Формула для расхода, если нагрев идет паром:
G – расход соответствующего теплоносителя [кг/ч];
Q – количество теплоты [Вт];
с – удельная теплоемкость теплоносителей [Дж/кг·град];
r – теплота конденсации [Дж/кг];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C].
Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:
δст – толщина стенки [мм];
λст – коэффициент теплопроводности материала стенки [Вт/м·град];
α1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м 2 ·град];
Rзаг – коэффициент загрязнения стенки.
Конструктивный расчет
В данном виде расчета, существуют два подвида: расчет подробный и ориентировочный.
Расчет ориентировочный предназначен для определения поверхности теплообменника, размера его проходного сечения, поиска приближенных коэффициентов значения теплообмена. Последняя задача выполняется с помощью справочных материалов.
Ориентировочный расчет поверхности теплообмена производят благодаря следующим формулам:
F = Q/ k·∆tср [м 2 ]
Размер проходного сечения теплоносителей определяют из формулы:
S = G/(w·ρ) [м 2 ]
G – расход теплоносителя [кг/ч];
(w·ρ) – массовая скорость потока теплоносителя [кг/ м 2 ·с]. Для расчета скорость потока принимают исходя из типа теплоносителей:
Вид теплоносителя | Скорость потока, м/с | |||||||
Вязкие жидкости | 0,636 · (∆Pгр/∆Pнагр) 0,364 · (1000 – t нагр ср/ 1000 – tгр ср) Gгр, нагр – расход теплоносителей [кг/ч]; Если соотношение Хгр/Хнагр будет меньше двух, то выбираем компоновку симметрическую, если больше двух – несимметричную. Ниже представлена формула, по которой высчитываем количество каналов среды: Gнагр – расход теплоносителя [кг/ч]; Гидравлический расчетТехнологические потоки, проходя через теплообменное оборудование, теряют напор или давление потоков. Это связано с тем, что каждый аппарат имеет собственное гидравлическое сопротивление. Формула, используемая для нахождения гидравлического сопротивления, которое создают аппараты теплообмена: ∆pп – потери давления [Па]; ОСТАВЬТЕ ЗАПРОС |
Горячая сторона | Холодная сторона | |
Т1/Т2 | 135/9 ℃ | 40/70 ℃ |
Расход | 100т/ч |
Вот так мы с вами нашли неизвестный нам ранее массовый расход среды холодного контура, имея лишь параметры горячего.
Как рассчитать пластинчатый теплообменник (видео)
- Как подобрать тепловое реле к контактору
- Как подобрать теплообменник для отопления