Как погасить дугу переменного тока

Гашение электрической дуги в цепях постоянного и переменного тока

Гашение электрической дуги в цепях постоянного тока. При размыкании контактов аппарата, находящегося в цепи постоянного тока, возникает дуговой разряд. Для гашения возникающей дуги постоянного тока обычно стремятся повысить напряжение на дуге (и ее сопротивление) или путем растяжения дуги, или путем повышения напряженности электрического поля в дуговом столбе, а большей частью – одновременно и тем и другим путями. Это достигается применением специальных дугогасительных камер в выключающих аппаратах, задача которых состоит в том, чтобы обеспечивать быстрое растяжение дуги и повышения напряжения на ней, с одной стороны, а с другой, – ограничивать распространение порождаемого ею пламени и раскаленных газов в приемлемом объеме пространства.

Электрическую цепь следует отключать так, чтобы перенапряжения не превышали тех величин, которые может выдержать без пробоя электрическая изоляция. Такие условия выполняются в рационально сконструированных выключателях с электрической дугой, при гашении которой большая часть электромагнитной энергии цепи превращается в тепловую и рассеивается столбом дуги в окружающую среду. В результате энергия, запасаемая в емкости, и перенапряжения на емкости снижаются. В этом отношении электрическая дуга играет положительную роль.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токаНапряжение на дуговом промежутке Uд меняется в процессе гашения дуги в соответствии с вольтамперной характеристикой (ВАХ) дугогасительного устройства. Для многих видов этих устройств ВАХ такова, что при малых токах напряжение Uд принимает большие значения. Это определяет возможность больших перенапряжений при гашении дуги. При применении ДУ типа дугогасительной решетки, в которой Uд почти не зависит от тока, а при малых токах остается относительно небольшим, эти перенапряжения значительно снижаются.

На рис. 3.5 представлены две формы ВАХ, где зависимость 1 имеет малое напряжение в области больших токов и очень высокий пик напряжения в области малых токов, а зависимость 2, наоборот, характеризуется более высокими напряжениями на дуге в области больших токов и имеет небольшой подъем напряжения при подходе тока к нулю. Вид 2 (см. рис. 3.5) приобретает ВАХ дуги, затянутой в узкую щель между плоскостями из жаростойкой керамики. В этом случае при больших токах дуговой столб испытывает сильную деформацию и подвергается интенсивному охлаждению. Вследствие этого напряжение на дуге значительно возрастает. В области же малых токов сечение дугового канала делается небольшим, следовательно, охлаждающее влияние плоскостей резко снижается, что приводит к относительно низким значениям напряженности электрического поля и напряжения на дуговом канале. Форму характеристики, подобную 1 (см. рис. 3.5), можно наблюдать, если контакты аппарата постоянного тока были погружены в масло. В этом случае охлаждающая и деионизирующая роль масла в области большого тока может быть незначительной, т.к. дуговой канал окутан газовым пузырем с малой теплопроводностью. В области же малых токов окружающее дугу масло может тесно соприкасаться с дуговым каналом, что существенно повышает отбор тепла от дугового канала и ведет к повышению напряженности на нем.

Задача гашения дуги постоянного тока сводится к соблюдению одного из двух основных условий:

· увеличению напряженности электрического поля Е в дуговом столбе, увеличению длины дуги или увеличению суммы падений напряжений у электродов. Последнее достигается увеличением количества металлических электродов, разбивающих дугу на ряд коротких дуг. Все эти факторы приводят к повышению напряжения на межконтактном промежутке;

· увеличению сопротивления или снижению напряжения цепи.

Необходимо отметить, что чрезмерное увеличение длины дуги приводит к возрастанию размеров ДУ и может порождать в некоторых случаях значительные перенапряжения, опасные для изоляции установок, находящихся в коммутируемой цепи.

Весьма часто в ДУ постоянного тока применяют магнитное дутье, т.е. создают в зоне горения дуги поперечное магнитное поле, которое увеличивает скорость перемещения (и растяжения) дуги и способствует вхождению дугового столба в узкие щели между изоляционными стенками, что активно способствует гашению дуги и улучшает форму ВАХ.

Гашение электрической дуги в цепях переменного тока. Дуга переменного тока обычно гасится значительно легче, чем дуга постоянного тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения сопротивления дугового столба (практически ®¥).

При переменном токе этого делать не требуется: здесь через каждый полупериод ток естественным путем проходит через нулевое значение, и надо лишь воспользоваться этим обстоятельством и создать вблизи перехода через ноль такие условия в межконтактном пространстве, чтобы протекание тока цепи вслед за этим переходом не возобновлялось. Поэтому условия гашения дуги переменного тока следует трактовать иначе, чем условия гашения дуги постоянного тока.

Однако существует ряд случаев, которые оказывают специфическое влияние на условия гашения дуги переменного тока.

Открытая дуга переменного тока при высоком напряжении источника. Открытая дуга переменного тока в моменты перехода через ноль сохраняет высокую проводимость, и поэтому в установках высокого напряжения гашение открытой дуги происходит не вследствие перехода тока через ноль и образования прочности промежутка, а главным образом вследствие растяжения дугового столба и образования на нем высокого напряжения горения. При таком режиме ток в цепи начинает заметно падать за несколько периодов до полного обрыва дуги, и причиной его ограничения является возрастание сопротивления канала дуги.

При определенной длине дуги переменного тока напряжение сети оказывается недостаточным для поддержания горения дуги, наступает нарушение баланса мощностей (подводимой и отводимой), и ток цепи довольно быстро уменьшается и, наконец, совсем прекращается. Таким образом, в цепях, содержащих только активное сопротивление, критический ток и критическая длина дуги определяются выражениями: Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока; Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока, где Iз – действующее значение тока цепи при закороченном дуговом промежутке. Для цепей с индуктивным сопротивлением эти

выражения примут вид: Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока; Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока, т.е. в цепях с индуктивным сопротивлением Iкр и lкр имеют более высокие значения.

Дуга переменного тока в условиях активной деионизации. Если столб дуги переменного тока подвергается интенсивной деионизации, то в этом случае механизм гашения дуги существенно меняется по сравнению с гашением открытой дуги в цепи высокого напряжения. За счет активного воздействия газовой или жидкой среды диаметр дугового канала сокращается (плотность тока повышается), и изменение его следует почти синхронно с током. При подходе тока к нулю дуговой столб приобретает весьма малые размеры и благодаря этому быстро распадаетсяпосле достижения током нулевого значения, теряет свою проводимость и приобретает заметную электрическую прочность. В таком случае восстановление дуги в следующий полупериод связано с пробоем межконтактного промежутка. Эти условия характерны для отключающих аппаратов высокого напряжения.

Источник

Условия гашения дуг переменного тока

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

При горении дуги переменного тока в течение каждого полупериода имеют место такие же физические процессы, что и в дуге постоянного тока. В начале полупериода напряжение на дуге возрастает по синусоидальному закону до значения напряжения зажигания Uз — участок 0—а (рис. 304,б), а затем после возникновения дуги падает по мере возрастания тока — участок а — b. Во вторую часть полупериода, когда ток начинает снижаться, напряжение на дуге вновь возрастает до значения напряжения гашения Uг при спаде тока до нуля — участок b — с.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

В течение следующего полупериода напряжение меняет знак и по синусоидальному закону возрастает до значения напряжения зажигания, соответствующего точке а’ вольт-амперной характеристики. По мере роста тока напряжение снижается, а затем вновь повышается при снижении тока. Кривая напряжения дуги, как видно из рис. 304, б, имеет форму срезанной синусоиды. Процесс деионизации заряженных частиц в промежутке между контактами продолжается лишь незначительную долю периода (участки 0 — а и с —а’) и, как правило, за это время не заканчивается, в результате чего дуга возникает снова. Окончательное гашение дуги будет иметь место только после ряда повторных зажиганий во время одного из последующих переходов тока через нуль.

Возобновление дуги после перехода тока через нуль объясняется тем, что после спада тока к нулевому значению ионизация, существующая в стволе дуги, исчезнет не сразу, так как она зависит от температуры плазмы в остаточном стволе дуги. По мере уменьшения температуры возрастает электрическая прочность межконтактного промежутка. Однако если в какой-то момент времени мгновенное значение приложенного напряжения будет больше пробивного напряжения промежутка, то произойдет его пробой, возникнет дуга и потечет ток другой полярности.

Дуга переменного тока обычно гасится легче, чем дуга постоянного тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения сопротивления дугового столба (практически до бесконечности). При переменном токе этого делать не требуется: здесь через каждый полу период ток естественным путем проходит через нулевое значение, и надо лишь воспользоваться этим обстоятельством и создать вблизи перехода через нуль такие условия в межконтактном промежутке, чтобы протекание тока цепи вслед за этим переходом не возобновлялось. Поэтому условия гашения дуги переменного тока следует трактовать иначе, чем условия гашения дуги постоянного тока. Исключением может быть лишь открытая дуга переменного тока в установках высокого напряжения, когда определяющим фактором является активное сопротивление сильно растянутого дугового столба. Тогда условия гашения дуги переменного тока по существу становятся близкими к условиям гашения дуги при постоянном токе. В другом крайнем случае сопротивление столба дуги во время ее горения практически не влияет на процесс ее гашения (в условиях активной деионизации), и тогда при определении условий гашения дуги рассматривается взаимозависимость процессов за переходом тока через нуль. Но существует и третий случай, когда при оценке условий гашения дуги надо считаться как с влиянием активного сопротивления столба дуги, так и учитывать характер протекания процессов за нулем тока.

Источник

Процесс образования электрической дуги и способы ее гашения

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.

Причины возникновения электрический дуги

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токаПроцесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются переходное сопротивление ( плотность тока и температура — начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.

В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает электрическое поле высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.

Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, — положительно заряженные частицы — в противоположном направлении (к катоду). Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токаПроводимость плазмы близка к проводимости металлов.

В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации — процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.

В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.

Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Способы гашения дуги в коммутационных электрических аппаратах

Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.

Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.

В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.

В коммутационных аппаратах используют различные способы гашения дуги.

При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.

Деление длинной дуги на ряд коротких дуг

Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Охлаждение дуги в узких щелях

Гашение дуги в малом объеме облегчается. Поэтому в коммутационных аппаратах широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.

Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.

Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.

Внешнее магнитное поле для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Гашение дуги высоким давлением

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токаПри неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.

Гашение дуги в масле

Если контакты выключателя помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70. 80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токаДугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.

Другие способы гашения дуги в аппаратах на напряжение выше 1 кВ

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Дуга переменного тока и условия ее гашения

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

ЛЕКЦИЯ №9

5.4 Дуга переменного тока и условия ее гашения.

5.5 Способы гашения электрической дуги, бездуговая коммутация.

Рассматривается процесс отключения активной нагрузки, однако при этом выполняется первый закон коммутации, так как небольшая индуктивность имеется в любой электрической цепи. В момент времени t = 0 (рис. 32) размыкаются контакты, загорается дуга. При подходе тока к нулю к дуге подводится малая мощность, температура её уменьшается, что способствует деионизации и дуга гаснет при напряжении гашения UГ. На рисунке a1b1 линия восстановления электрической прочности промежутка после погасания дуги.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

В момент пересечения этой линии с восстанавливающимся напряжением на контактах u, при напряжении зажигания uЗ, происходит повторное зажигание дуги.

Электрическая прочность промежутка – это напряжение при котором происходит его электрический пробой.

После очередного погасания дуги величина напряжения зажигания u′′З становится больше, а в последний полупериод дуга не зажигается.

Условие гашения – если после перехода тока через нуль прочность промежутка нарастает быстрее и остаётся всё время выше, чем

восстанавливающееся напряжение на контактах, то процесс заканчивается угасанием дуги.

Восстановление электрической прочности промежутка должно обеспечиваться дугогасительным устройством.

Дуга переменного тока обычно гасится легче, чем дуга постоянного тока. Чтобы погасить дугу постоянного тока, надо насильственным путём свести к нулю ток цепи. При переменном токе через каждый полупериод ток естественным путём проходит через нуль, и надо создать условия не возобновления тока.

Источник

13 Горения и гашения дуги переменного тока

9. Горения и гашения дуги переменного тока: в условиях активной деионизации, высокого напряжения, низкого напряжения.

УСЛОВИЯ ГАШЕНИЯ ДУГ ПЕРЕМЕННОГО ТОКА

Дуга переменного тока обычно гасится легче, чем дуга постоянно­го тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения сопротивле­ния дугового столба (практически до бесконечности). При перемен­ном токе этого делать не требуется: здесь через каждый полу период ток естественным путем проходит через нулевое значение, и надо лишь воспользоваться этим обстоятельством и создать вблизи пере­хода через нуль такие условия в межконтактном промежутке, чтобы протекание тока цепи вслед за этим переходом не возобновлялось. Поэтому условия гашения дуги переменного тока следует трактовать иначе, чем условия гашения дуги постоянного тока. Исключением может быть лишь открытая дуга переменного тока в установках вы­сокого напряжения, когда определяющим фактором является актив­ное сопротивление сильно растянутого дугового столба. Тогда усло­вия гашения дуги переменного тока по существу становятся близки­ми к условиям гашения дуги при постоянном токе. В другом крайнем случае сопротивление столба дуги во время ее горения практически не влияет на процесс ее гашения (в условиях активной деионизации), и тогда при определении условий гашения дуги рассматривается вза­имозависимость процессов за переходом тока через нуль. Но сущест­вует и третий случай, когда при оценке условий гашения дуги надо считаться как с влиянием активного сопротивления столба дуги, так и учитывать характер протекания процессов за нулем тока.

Рекомендуемые файлы

Перейдем к рассмотрению этих трех случаев.

А. Открытая дуга переменного тока при высоком напряжении источника

Открытая дуга переменного тока в моменты перехода тока через нуль сохраняет высокую проводимость, и поэтому в установках высокого напряжения гашение открытой дуги происходит не вслед­ствие перехода через нуль и образования прочности промежутка, а главным образом вследствие растяжения дугового столба и обра­зования на нем высокого напряжения горения (на всем протяжении полупериода). При таком режиме ток в цепи начинает заметно падать за несколько периодов до полного обрыва дуги и причиной его ог­раничения является возрастание сопротивления канала дуги.

При определенной длине дуги переменного тока напряжение сети оказывается недостаточным для поддержания горения дуги (критическая длина), наступает нарушение баланса мощностей (подводимой и отдаваемой), и ток цепи довольно быстро уменьша­ется и, наконец, совсем прекращается.

На рис. 9.1 приведена осциллограмма тока и напряжения на дуге переменного тока, возникшей при размыкании ножа разъедини­теля высокого напряжения.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Рис. 9.1. Осциллограмма тока и напряжения от­крытой дуги при высоком напряжении источника

В начале процесса, как можно видеть, ток в цепи меняется очень слабо и его величина определяется главным образом сопротивлением цепи. По мере же растяжения дуги доминирующим становится со­противление дуги.

Таким образом, если в основу анализа процесса гашения откры­той дуги переменного тока положить условие нарушения баланса напряжений при горении дуги (но не в нулевые переходы тока), то задача может быть сведена по существу к той же самой, которая возникает и при гашении дуги постоянного тока.

Для этой цели сделаем допущение, что статическая вольтамперная характеристика дуги при постоянном токе отражает зависи­мость между напряжением на дуге при переменном токе в момент максимума тока от амплитуды тока (амплитудная характеристика). Также предположим, как это мы делаем в случае постоянного тока, что для цепи переменного тока, содержащего только активное со­противление, можно принять то же условие устойчивости горения дуги, т. е.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока(9.1)

где Um — амплитудное значение напряжения источника (сети):

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токаамплитуда тока в цепи с дугой;

напряжение па дуге в момент максимума тока

Если так же, как и ранее, предположить, что напря­жение при максимуме тока связывается с амплитудой тока уравне­нием

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока(9.2)

то критическая длина дуги может быть представлена

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

гдеКак погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токаамплитудное значение тока в цепи, ограниченного только собственным сопротивлением цепи R (дуговой промежуток замкнут накоротко). Если положить, для воздуха и относительно небольших токов как и ранее, С = 80 и а = 0,5 и выразить ток и напряжение в дей­ствующих значениях, то для цепи, содержащей только активное сопротивление (безиндуктивная цепь), получим

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока(9.2)

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токагде действующее значение критического тока, А;

действующее значение тока цепи при закороченном

ду­говом промежутке, А;

действующее значение напряжения сети, кВ
критическая длина дуги, м
При растянутой дуге напряжение на дуговом промежутке приближается к синусоидальному, поэтому для ориентировочных рас­четов можно сделать допущение о синусоидальности напряжения на дуге, что позволяет баланс напряжений для цепи содержащей индуктивное сопротивление и сопротивление столба дуги представить так:

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока(9.3)

Используя опять уравнение вольтамперной характеристики дуги и решая задачу в отношении критической длины дуги и кри­тического тока, получим после подстановки для частного случая С = 80 и а = 0 5 по­лучим’

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока(9.1)

где ток выражен в амперах; напряжение в киловольтах; lкр — в метрах.

Из сопоставления формул можно видеть, что в цепях с индуктивным сопротивлением критический ток и крити­ческая длина дуги имеют более высокие значения по сравнению со значениями этих величин в цепи с чисто активным сопротив­лением.

Приведенные формулы не учитывают ряда факто­ров, имеющих влияние на процесс гашения дуги (расположение электродов, ветровые условия и пр.), и могут служить лишь для ориентировочных расчетов критических токов и критических длин дуг при их угасании в установках высокого напряжения.

Б. Дуга переменного тока в условиях активной деионизации

Если столб дуги переменного тока подвергается интенсивной деионизации, то в этом случае механизм гашения дуги существенно меняется по сравнению с предыдущим (открытая дуга в цепи высо­кого напряжения). За счет активного воздействия газовой или жидкой среды диаметр дугового канала сокращается (плотность тока повышается) и изменение его следует почти синхронно с током.

При подходе тока к нулю дуговой столб приобретает весьма ма­лые размеры и благодаря этому быстро распадается после достиже­ния током нулевого значения, теряет свою проводимость и приобретает заметную электрическую прочность. В таком случае восстановление дуги в следующий полупериод связано с пробоем межконтактного промежутка. Эти условия характерны для отключающих ап­паратов относительно высокого напряжения.

Таким образом, дуга переменного тока в условиях активной деионизации дугового столба представляет собой такое явление, когда при каждом переходе тока через нуль возникает соревнова­ние двух процессов, а именно: процесса восстановления электри­ческой прочности промежутка и процесса восстановления напря­жения на промежутке. Исходя из такой трактовки процесса, не­трудно заключить, что для угасания дуги переменного тока при интенсивной деионизации необходимо обеспечить такой режим, при котором электрическая прочность дугового промежутка после достижения током его нулевого значения нарастала бы достаточно быстро и достигала бы достаточного уровня.

На рис. 9.2 показано изменение тока в цепи и напряжения на дуге, подвергающейся интенсивной деионизации, но все же горя­щей устойчиво в течение нескольких полупериодов. Как видно из этого рисунка, после первого и второго переходов тока через нуль напряжение на дуговом промежутке достигает относительно высо­ких значений пиков напряжения зажигания U3, при которых возникает зажигание дуги в последующий период. В процессе протека­ния тока наблюдается задержка на нуле (ожидание пробоя). Эти задержки в токе на нуле могут быть большей или меньшей величины в зависимости от существующих условий в цепи (сдвига фаз между током и напряжением, величины напряжения, действующего в цепи, постоянных контура L, С и R).

Если обратиться снова к рис. 9.2, можно установить, что после третьего перехода через нуль прекратилось протекание тока по цепи, т. е. дуга погасла, а на межконтактном промежутке вы­ключателя полностью восстано­вилось напряжение, развивае­мое источником (рис. 9.2, а). Сдвиг фаз между током и напря­жением при этом принят близ­ким к 90°. Как можно видеть из рисунка, при активной деионизации дуги пики напряжения зажигания ее обычно значительно превосходят по своей величине напряжение горения дуги. Таким образом, в отличие от открытой дуги, напряжение горения UД не является опреде­ляющей величиной при оценке условий угасания дуги.

Из рис. 9.2 также видно, что при первом переходе тока через нуль пик напряжения на дуге несколько меньше напря­жения источника, и дуга легко зажигается вновь. При втором переходе тока через нуль, пик напряжения зажигания дуги несколько превышает напря­жение зажигания при первом переходе тока через нуль, но все же дуга зажигается. При восстановлении напряжения на проме­жутке после третьего перехода через нуль возникают колебания, вследствие чего напряжение на нем существенно превосходит напряжение источника (в данном рассмотрении амплитуду напря­жения).

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Теоретически, если пренебречь пиком гашения дуги и затуханием колебаний (контур без потерь), амплитудное значе­ние восстанавливающегося напряжения на дуговом промежутке может достигнуть двойной величины. При третьем переходе тока через нуль прочность промежутка достигает такой величины, что пик восстанавливающегося напряжения U оказывается недостаточным, чтобы вызвать повторное зажигание дуги, и цепь обрывается окончательно. Напряжение на промежутке в своем переход­ном режиме совершает ряд колебаний и далее меняется с рабочей частотой.

При оценке жесткости сети обычно подразумевают идеальный выключатель, т. е. полагают, что напряжение на дуге равно нулю, а после перехода тока через нуль сопротивление промежутка становится сразу равным бесконечности. При таком предположении восстановление напряжения на выключателе начинается с нуля, а не с пика гашения, и на затухание восстанавливаю­щегося напряжения оказывает влияние только сопротивление цепи.

Существенно важной величиной при оценке жесткости сетей является коэффициент превышения амплитуды, представляющий собой отношение максимальной величины восстанавливающегося напряжения Uвт к мгновенному значению напряжения источника в момент перехода тока через нуль.

Таким образом, условие гашения дуги переменного тока при активной деионизации промежутка может быть сформулировано следующим образом: если после перехода тока через нуль прочность промежутка нарастает быстрее и остается все время выше, чем восстанавливающееся напряжение на выключателе, то процесс закан­чивается угасанием дуги.

При несоблюдении этого условия наступают повторный пробой и восстановление дуги.

В. Дуга переменного тока в условиях отключения цепей низкого напряжения

В установках низкого напряжения (до 1000 в) электрическое сопротивление столба дуги обычно бывает соизмеримым с сопротив­лением отключаемой цепи, а напряжение на дуге — с напряже­нием источника питания. В таких условиях уже нельзя пренебре­гать влиянием напряжения (и сопротивления) дуги, а с другой сто­роны, — нельзя не рассматривать явлений на нуле тока, т. е. не учитывать влияния восстановления прочности при переходе тока через нуль.

Общая картина процессов при отключении цепи переменного тока низкого напряжения представлена на рис. 9.3. До момента размыкания контактов аппарата (МРК) по цепи протекал ток I, определяемый в совокупности величинамиКак погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

В момент t0 разомкнулись контакты аппарата и начало воз­растать сопротивление дугового промежутка Rд и напряжение на нем UД.

Увеличивающееся при гашении дуги сопротивление Rд приво­дит к некоторому уменьшению амплитудных значений тока (I1,I2,I3) по полупериодам и уменьшению сдвига фаз между током цепи iД и напряжением источника UИ. Соответствующие углы сдвига фаз, определяемые отрезками времени между моментами перехода через нуль тока дуги и напряжения источника, обозначены через Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного токаПонятие о сдвиге фаз между током и напряже­нием относится к синусоидальным явлениям. В процессе гашения электрической дуги в установках низкого напряжения синусоида тока искажается вследствие роста сопротивления дуги. Поэтому понятие о сдвиге фаз здесь носит условный характер. В моменты перехода тока дуги через нуль (точки1 и 2) не создавалось необхо­димых условий для окончательного погасания дуги за этими пере­ходами и она повторно зажигалась вслед за ними. В момент 3-го пе­рехода тока через нуль такие условия создались, дуга погасла и протекание тока по цепи прекратилось. За этим переходом по цепи может протекать лишь небольшой остаточный ток i0CT, определяе­мый так называемой остаточной проводимостью межконтактного промежутка аппарата.

При анализе условий возникновения между контактами выключателя электрической прочности, необходимой для гашения дуги, обычно рассматривают раздельно короткие и длинные промежутки с целью наиболее четкого выявления тех осо­бенностей, которые необходимо использовать при конструирова­нии дугогасительных устройств выключателей, предохранителей, контакторов, разрядников и пр.

В действительности, особенно в аппаратах низкого напряжения, имеют место смешанные процессы, т. е. свойственные и коротким, и длинным дугам одновременно.

Как погасить дугу переменного тока. Смотреть фото Как погасить дугу переменного тока. Смотреть картинку Как погасить дугу переменного тока. Картинка про Как погасить дугу переменного тока. Фото Как погасить дугу переменного тока

Рис.9.3.Характер процессов при отключении цепи переменного тока низкого напряжения

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *