Лямбда в программировании что это

Лямбда-выражения в C++

В C++ 11 и более поздних версиях лямбда-выражение, часто называемое лямбда– — это удобный способ определения объекта анонимной функции ( замыкания) непосредственно в расположении, где оно вызывается или передается в качестве аргумента функции. Обычно лямбда-выражения используются для инкапсуляции нескольких строк кода, передаваемых алгоритмам или асинхронным функциям. В этой статье определяются лямбда-выражения и их сравнение с другими методами программирования. Он описывает их преимущества и предоставляет некоторые основные примеры.

Связанные статьи

Части лямбда-выражения

В стандарте ISO C++ демонстрируется простое лямбда-выражение, передаваемое функции std::sort() в качестве третьего аргумента:

На следующем рисунке показана структура лямбда-выражения:

Лямбда в программировании что это. Смотреть фото Лямбда в программировании что это. Смотреть картинку Лямбда в программировании что это. Картинка про Лямбда в программировании что это. Фото Лямбда в программировании что это

предложение Capture (также известное как оператор лямбда-выражения в спецификации C++).

список параметров Используемых. (Также называется лямбда-объявлением)

изменяемая спецификация Используемых.

Спецификация Exception Используемых.

замыкающий-возвращаемый тип Используемых.

Предложение Capture

Лямбда-выражение может добавлять новые переменные в тексте (в C++ 14), а также получать доступ к переменным из окружающей области или записыватьих. Лямбда-выражение начинается с предложения Capture. Он указывает, какие переменные фиксируются, а также указывает, является ли запись по значению или по ссылке. Доступ к переменным с префиксом амперсанда ( & ) осуществляется по ссылке и к переменным, к которым нет доступа по значению.

Пустое предложение фиксации ( [ ] ) показывает, что тело лямбда-выражения не осуществляет доступ к переменным во внешней области видимости.

Можно использовать режим захвата по умолчанию, чтобы указать, как фиксировать все внешние переменные, упоминаемые в теле лямбда-выражения: означает, что [&] все переменные, на которые вы ссылаетесь, захватываются по ссылке, а [=] значит, они записываются по значению. Можно сначала использовать режим фиксации по умолчанию, а затем применить для определенных переменных другой режим. Например, если тело лямбда-выражения осуществляет доступ к внешней переменной total по ссылке, а к внешней переменной factor по значению, следующие предложения фиксации эквивалентны:

При использовании записи по умолчанию фиксируются только те переменные, которые упоминаются в теле лямбда-выражения.

Захват, за которым следует многоточие, — это расширение пакета, как показано в следующем примере шаблона Variadic :

Чтобы использовать лямбда-выражения в теле функции члена класса, передайте this указатель в предложение Capture, чтобы предоставить доступ к функциям и членам данных включающего класса.

Visual Studio 2017 версии 15,3 и более поздних версий (доступно в режиме и более поздних версиях): this указатель может быть записан по значению путем указания *this в предложении capture. Захват по значению копирует весь замыкание на каждый узел вызова, где вызывается лямбда-выражение. (Замыканием является объект анонимной функции, инкапсулирующий лямбда-выражение.) Захват по значению полезен, когда лямбда выполняется в параллельных или асинхронных операциях. Это особенно полезно на некоторых аппаратных архитектурах, таких как NUMA.

Пример, демонстрирующий использование лямбда-выражений с функциями членов класса, см. в разделе «пример: использование лямбда-выражения в методе» в примерах лямбда-выражений.

При использовании предложения Capture рекомендуется учитывать такие моменты, особенно при использовании лямбда-выражений с многопоточностью:

Захваты ссылок можно использовать для изменения переменных вне, но захваты значений не могут. ( mutable позволяет изменять копии, но не оригиналы.)

Захват ссылок отражает обновления переменных вне, но не фиксирует значения.

Фиксация ссылки вводит зависимость от времени существования, тогда как фиксация значения не обладает зависимостями от времени существования. Это особенно важно при асинхронном выполнении лямбда-выражения. Если вы захватываете локальную по ссылке в асинхронном лямбда-выражении, это локально может быть легко пропала в момент выполнения лямбда-выражения. Код может вызвать нарушение прав доступа во время выполнения.

Обобщенная фиксация (C++14)

В C++14 вы можете объявлять и инициализировать новые переменные в предложении фиксации. Для этого не требуется, чтобы эти переменные существовали во внешней области видимости лямбда-функции. Инициализация может быть выражена в качестве любого произвольного выражения. Тип новой переменной определяется типом, который создается выражением. Эта функция позволяет собирать переменные только для перемещения (например, std::unique_ptr ) из окружающей области и использовать их в лямбда-выражении.

Список параметров

Лямбда-выражения могут записывать переменные и принимать входные параметры. Список параметров (лямбда-декларатор в стандартном синтаксисе) является необязательным и в большинстве аспектов напоминает список параметров для функции.

В C++ 14, если тип параметра является универсальным, можно использовать ключевое слово в качестве спецификатора типа. Это ключевое слово указывает компилятору создать оператор вызова функции в качестве шаблона. Каждый экземпляр auto в списке параметров эквивалентен отдельному параметру типа.

Лямбда-выражение может принимать другое лямбда-выражение в качестве своего аргумента. Дополнительные сведения см. в разделе «Лямбда-выражения более высокого порядка» в статье Примеры лямбда-выражений.

Изменяемая спецификация

Спецификация исключений

Дополнительные сведения см. в разделе спецификации исключений (throw).

Возвращаемый тип

Лямбда-выражение может создавать другое лямбда-выражение в качестве своего возвращаемого значения. Дополнительные сведения см. в разделе «лямбда-выражения более высокого порядка» в примерах лямбда-выражений.

Тело лямбды

Тело лямбда-выражения является составным оператором. Он может содержать все, что разрешено в теле обычной функции или функции-члена. Тело обычной функции и лямбда-выражения может осуществлять доступ к следующим типам переменных:

Фиксированные переменные из внешней области видимости (см. выше).

Локально объявленные переменные.

Члены данных класса, объявленные внутри класса и this захваченные.

Любая переменная, имеющая статическую длительность хранения, например глобальные переменные.

В следующем примере содержится лямбда-выражение, которое явно фиксирует переменную n по значению и неявно фиксирует переменную m по ссылке.

Дополнительные сведения см. в разделе Generate.

Дополнительные сведения см. в разделе generate_n.

constexpr лямбда-выражения

Visual Studio 2017 версии 15,3 и более поздних версий (доступно в режиме и более поздних версиях): лямбда-выражение можно объявить как constexpr (или использовать его в константном выражении), если инициализация каждого захваченного или введенного элемента данных разрешена в константном выражении.

Лямбда-выражение неявно, constexpr если его результат удовлетворяет требованиям constexpr функции:

Специально для систем Майкрософт

Visual Studio поддерживает стандартную лямбда-функцию c++ 11 и лямбда-выражения без отслеживания состояния. Лямбда без отслеживания состояния преобразуется в указатель функции, который использует произвольное соглашение о вызовах.

Источник

Лямбда-выражения (Справочник по C#)

Лямбда-выражение используется для создания анонимной функции. Используйте оператор объявления лямбда-выражения => для отделения списка параметров лямбда-выражения от исполняемого кода. Лямбда-выражение может иметь одну из двух следующих форм:

Лямбда выражения, имеющая выражение в качестве текста:

Лямбда оператора, имеющая блок операторов в качестве текста:

Чтобы создать лямбда-выражение, необходимо указать входные параметры (если они есть) с левой стороны лямбда-оператора и блок выражений или операторов с другой стороны.

Лямбда-выражения можно также преобразовать в типы дерева выражения, как показано в следующем примере:

Лямбда-выражения можно использовать в любом коде, для которого требуются экземпляры типов делегатов или деревьев выражений, например в качестве аргумента метода Task.Run(Action) для передачи кода, который должен выполняться в фоновом режиме. Можно также использовать лямбда-выражения при применении LINQ в C#, как показано в следующем примере:

Выражения-лямбды

Лямбда-выражение с выражением с правой стороны оператора => называется выражением лямбда. Выражения-лямбды возвращают результат выражения и принимают следующую основную форму.

Лямбды операторов

Лямбда-инструкция напоминает лямбда-выражение, за исключением того, что инструкции заключаются в фигурные скобки:

Тело лямбды оператора может состоять из любого количества операторов; однако на практике обычно используется не более двух-трех.

Лямбда-инструкции нельзя использовать для создания деревьев выражений.

Входные параметры лямбда-выражения

Входные параметры лямбда-выражения заключаются в круглые скобки. Нулевое количество входных параметры задается пустыми скобками:

Если лямбда-выражение имеет только один входной параметр, круглые скобки необязательны:

Два и более входных параметра разделяются запятыми:

Иногда компилятор не может вывести типы входных параметров. Вы можете указать типы данных в явном виде, как показано в следующем примере:

Для входных параметров все типы нужно задать либо в явном, либо в неявном виде. В противном случае компилятор выдает ошибку CS0748.

Начиная с C# 9.0, вы можете использовать пустые переменные, чтобы указать два или более входных параметра лямбда-выражения, которые не используются в выражении:

Параметры пустой переменной лямбда-выражения полезны, если вы используете лямбда-выражение для указания обработчика событий.

Асинхронные лямбда-выражения

С помощью ключевых слов async и await можно легко создавать лямбда-выражения и операторы, включающие асинхронную обработку. Например, в следующем примере Windows Forms содержится обработчик событий, который вызывает асинхронный метод ExampleMethodAsync и ожидает его.

Такой же обработчик событий можно добавить с помощью асинхронного лямбда-выражения. Чтобы добавить этот обработчик, поставьте модификатор async перед списком параметров лямбда-выражения, как показано в следующем примере:

Дополнительные сведения о создании и использовании асинхронных методов см. в разделе Асинхронное программирование с использованием ключевых слов Async и Await.

Лямбда-выражения и кортежи

В C# 7.0 представлена встроенная поддержка кортежей. Кортеж можно ввести в качестве аргумента лямбда-выражения, и лямбда-выражение также может возвращать кортеж. В некоторых случаях компилятор C# использует определение типа для определения типов компонентов кортежа.

Кортеж определяется путем заключения в скобки списка его компонентов с разделителями-запятыми. В следующем примере кортеж с тремя компонентами используется для передачи последовательности чисел в лямбда-выражение. Оно удваивает каждое значение и возвращает кортеж с тремя компонентами, содержащий результат операций умножения.

Дополнительные сведения о кортежах в C# см. в статье Типы кортежей.

Лямбда-выражения со стандартными операторами запросов

В этом примере используется стандартный оператор запроса Count:

Компилятор может вывести тип входного параметра ввода; но его также можно определить явным образом. Данное лямбда-выражение подсчитывает указанные целые значения ( n ), которые при делении на два дают остаток 1.

В следующем примере показано, как указать несколько входных параметров путем их заключения в скобки. Этот метод возвращает все элементы в массиве numbers до того числа, значение которого меньше его порядкового номера в массиве:

Лямбда-выражения не используются непосредственно в выражениях запросов, но их можно использовать в вызовах методов в выражениях запросов, как показано в следующем примере:

Определение типа в лямбда-выражениях

Общие правила определения типа для лямбда-выражений формулируются следующим образом:

Естественный тип для лямбда-выражений

У лямбда-выражений нет типа, так как в системе общих типов изначально отсутствует такое понятие, как лямбда-выражения. Но применительно к лямбда-выражениям иногда бывает удобно оперировать понятием типа. Под неофициальным термином «тип» понимается тип делегата или тип Expression, в который преобразуется лямбда-выражение.

Начиная с C# 10 некоторые лямбда-выражения имеют естественный тип. Вам не придется объявлять тип делегата, например Func или Action для лямбда-выражения, потому что компилятор может вывести тип делегата из параметров и типа выражения. В качестве примера рассмотрим следующее объявление:

Группы методов (то есть имена методов без списков аргументов) с ровно одной перегрузкой имеют естественный тип:

У многих лямбда-выражений нет естественного типа. Рассмотрим следующее объявление:

Объявленный тип возвращаемого значения

Как правило, тип возвращаемого значения лямбда-выражения является очевидным и легко выводится. Для некоторых выражений это не сработает:

Начиная с C# 10 можно указать тип возвращаемого значения для лямбда-выражения перед параметрами. При указании явного типа возвращаемого значения параметры должны быть заключены в круглые скобки, чтобы не путать компилятор и других разработчиков:

Атрибуты

Начиная с C# 10 к лямбда-выражениям можно применять атрибуты. Атрибуты добавляются перед объявлением параметра. При наличии атрибутов список параметров лямбда-выражения должен быть заключен в круглые скобки:

Можно применить любой атрибут, допустимый для AttributeTargets.Method.

Лямбда-выражения вызываются через базовый тип делегата. Это отличается от методов и локальных функций. Метод делегата Invoke не проверяет атрибуты в лямбда-выражении. При вызове лямбда-выражения атрибуты не оказывают никакого влияния. Атрибуты лямбда-выражений полезны для анализа кода и могут быть обнаружены с помощью отражения. Одним из последствий этого решения является тот факт, что System.Diagnostics.ConditionalAttribute невозможно применить к лямбда-выражению.

Запись внешних переменных и области видимости переменной в лямбда-выражениях

Лямбда-выражения могут ссылаться на внешние переменные. Это переменные в области метода, в котором определено лямбда-выражение, или области типа, который содержит лямбда-выражение. Переменные, полученные таким способом, сохраняются для использования в лямбда-выражениях, даже если бы в ином случае они оказались за границами области действия и уничтожились сборщиком мусора. Внешняя переменная должна быть определенным образом присвоена, прежде чем она сможет использоваться в лямбда-выражениях. В следующем примере демонстрируются эти правила.

Следующие правила применимы к области действия переменной в лямбда-выражениях.

Начиная с C# 9.0, вы можете применять модификатор static к лямбда-выражению для предотвращения непреднамеренного сохранения локальных переменных или состояния экземпляров лямбда-выражением:

Статическое лямбда-выражение не может сохранять локальные переменные или состояние экземпляров из охватывающих областей, но может ссылаться на статические элементы и определения констант.

Спецификация языка C#

Дополнительные сведения о функциях, добавленных в C# 9.0, см. в следующих заметках о функциях:

Источник

Лямбда-выражения в Java 8

В новой версии Java 8 наконец-то появились долгожданные лямбда-выражения. Возможно, это самая важная новая возможность последней версии; они позволяют писать быстрее и делают код более ясным, а также открывают дверь в мир функционального программирования. В этой статье я расскажу, как это работает.

Java задумывалась как объектно-ориентированный язык в 90-е годы, когда объектно-ориентированное программирование было главной парадигмой в разработке приложений. Задолго до этого было объектно-ориентированное программирование, были функциональные языки программирования, такие, как Lisp и Scheme, но их преимущества не были оценены за пределами академической среды. В последнее время функциональное программирование сильно выросло в значимости, потому что оно хорошо подходит для параллельного программирования и программирования, основанного на событиях («reactive»). Это не значит, что объектная ориентированность – плохо. Наоборот, вместо этого, выигрышная стратегия – смешивать объектно-ориентированное программирование и функциональное. Это имеет смысл, даже если вам не нужна параллельность. Например, библиотеки коллекций могут получить мощное API, если язык имеет удобный синтаксис для функциональных выражений.

Главным улучшением в Java 8 является добавление поддержки функциональных программных конструкций к его объектно-ориентированной основе. В этой статье я продемонстрирую основной синтаксис и как использовать его в нескольких важных контекстах. Ключевые моменты понятия лямбды:

Зачем нужны лямбды?

Лямбда-выражение представляет собой блок кода, который можно передать в другое место, поэтому он может быть выполнен позже, один или несколько раз. Прежде чем углубляться в синтаксис (и любопытное название), давайте сделаем шаг назад и увидим, где вы использовали аналогичные блоки кода в Java до этого.

Ключевым моментом является то, что метод run содержит код, который нужно выполнить в отдельном потоке.

Рассмотрим сортировку с использованием пользовательского компаратора. Если вы хотите отсортировать строки по длине, а не по умолчанию, вы можете передать объект Comparator в метод sort :

В качестве другого примера отложенного выполнения рассмотрим коллбэк для кнопки. Вы помещаете действие обратного вызова в метод класса, реализующего интерфейс слушателя, создаете экземпляр, и регистрируете экземпляр. Это настолько распространенный сценарий, что многие программисты используют синтаксис «анонимный экземпляр анонимного класса»:

Поскольку Java 8 позиционирует JavaFX в качестве преемника инструментария Swing GUI, я использую JavaFX в этих примерах. Детали не имеют значения. В каждой библиотеке пользовательского интерфейса, будь то Swing, JavaFX или Android, вы передаете кнопке некоторый код, который вы хотите запустить, когда кнопка нажата.

Во всех трех примерах вы видели один и тот же подход. Блок кода кому-то передавался — пулу потоков, методу сортировки или кнопке. Этот код вызывался некоторое время спустя.

До сих пор передача кода не была простой в Java. Вы не могли просто передать блоки кода куда угодно. Java является объектно-ориентированным языком, так что вы должны были создать объект, принадлежащий к классу, у которого есть метод с нужным кодом.
В других языках можно работать с блоками кода непосредственно. Проектировщики Java сопротивлялись добавлению этой функции в течение длительного времени. В конце концов, большая сила Java в ее простоте и последовательности. Язык может стать крайне беспорядочным, если будет включать в себя все функции, которые дают чуть более краткий код. Тем не менее, в тех других языках, это не просто легче порождать поток или зарегистрировать обработчик кнопки щелчка; многие их API проще, более последовательны и мощные. В Java, можно было бы написать подобные интерфейсы, которые принимают объекты классов, реализующих определенную функцию, но такие API было бы неудобно использовать.

В последнее время вопрос был не в том, расширять Java для функционального программирования или нет, а как это сделать. Потребовалось несколько лет экспериментов, прежде чем выяснилось, что это хорошо подходит для Java. В следующем разделе вы увидите, как можно работать с блоками кода в Java 8.

Синтаксис лямбда-выражений

Рассмотрим предыдущий пример сортировки еще раз. Мы передаем код, который проверяет, какая строка короче. Мы вычисляем

Вы только что видели ваше первое лямбда-выражение! Такое выражение является просто блоком кода вместе со спецификацией любых переменных, которые должны быть переданы в код.

Почему такое название? Много лет назад, когда еще не было никаких компьютеров, логик Алонзо Чёрч хотел формализовать, что значит для математической функции быть эффективно вычисляемой. (Любопытно, что есть функции, которые, как известно, существуют, но никто не знает, как вычислить их значения.) Он использовал греческую букву лямбда (λ), чтобы отметить параметры. Если бы он знал о Java API, он написал бы что-то не сильно похожее на то, что вы видели, скорее всего.

Почему буква λ? Разве Чёрч использовал все буквы алфавита? На самом деле, почтенный труд Principia Mathematica использует символ ˆ для обозначения свободных переменных, которые вдохновили Чёрча использовать заглавную лямбда (Λ) для параметров. Но, в конце концов, он переключился на строчной вариант буквы. С тех пор, выражение с переменными параметрами было названо «лямбда-выражение».

Если лямбда-выражение не имеет параметров, вы все равно ставите пустые скобки, так же, как с методом без параметров:

Если типы параметров лямбда-выражения можно вывести, можно опустить их. Например,

Здесь компилятор может сделать вывод, что firstStr и secondStr должны быть строками, потому что лямбда-выражение присваивается компаратору строк. (Мы посмотрим на это присваивание повнимательнее позже.)

Если метод имеет один параметр выводимого типа, вы можете даже опустить скобки:

Вы можете добавить аннотации или модификатор final к параметрам лямбды таким же образом, как и для параметров метода:

Вы никогда не указываете тип результата лямбда-выражения. Это всегда выясняется из контекста. Например, выражение

Функциональные интерфейсы

Вы можете поставить лямбда-выражение всякий раз, когда ожидается объект интерфейса с одним абстрактным методом. Такой интерфейс называется функциональным интерфейсом.

Это преобразование в интерфейсы – это то, что делает лямбда-выражения настолько мощными. Синтаксис короткий и простой. Вот еще один пример:

Этот код очень легко читать.

Наконец, заметим, что checked исключения могут возникнуть при преобразовании лямбды в экземпляр функционального интерфейса. Если тело лямбда-выражения может бросить checked исключение, это исключение должно быть объявлено в абстрактном методе целевого интерфейса. Например, следующее было бы ошибкой:

Поскольку Runnable.run не может бросить исключение, это присваивание является некорректным. Чтобы исправить ошибку, у вас есть два варианта. Вы можете поймать исключение в теле лямбда-выражения. Или вы можете присвоить лямбду интерфейсу, один абстрактный метод которого может бросить исключение. Например, метод call из интерфейса Callable может бросить любое исключение. Таким образом, вы можете присвоить лямбду Callable (если добавить return null ).

Ссылки на методы

В качестве другого примера, предположим, что вы хотите отсортировать строки независимо от регистра букв. Вы можете написать такой код:

Как вы можете видеть из этих примеров оператор :: отделяет имя метода от имени объекта или класса. Есть три основных варианта:

Ссылки на конструктор

Но это неудовлетворительно. Пользователь хочет массив кнопок, а не объектов. Библиотека потоков решает эту проблему за счет ссылок на конструкторы. Передайте Button[]::new методу toArray :

Метод toArray вызывает этот конструктор для получения массива нужного типа. Затем он заполняет и возвращает массив.

Область действия переменной

Часто вы хотели бы иметь возможность получить доступ к переменным из охватывающего метода или класса в лямбда-выражении. Рассмотрим следующий пример:

Если подумать хорошенько, то не очевидно, что здесь происходит. Код лямбда-выражения может выполниться гораздо позже вызова repeatText и переменные параметров уже будут потеряны. Как же переменные text и count остаются доступными?

Чтобы понять, что происходит, мы должны уточнить наши представления о лямбда-выражениях. Лямбда-выражение имеет три компонента:

Техническим термином для блока кода вместе со значениями свободных переменных является замыкание. Если кто-то злорадствует, что их язык поддерживает замыкания, будьте уверены, что Java также их поддерживает. В Java лямбда-выражения являются замыканиями. На самом деле, внутренние классы были замыканиями все это время. Java 8 предоставляет нам замыкания с привлекательным синтаксисом.

Как вы видели, лямбда-выражение может захватить значение переменной в охватывающей области. В Java, чтобы убедиться, что захватили значение корректно, есть важное ограничение. В лямбда-выражении можно ссылаться только на переменные, значения которых не меняются. Например, следующий код является неправильным:

Существует причина для этого ограничения. Изменяющиеся переменные в лямбда-выражениях не потокобезопасны. Рассмотрим последовательность параллельных задач, каждая из которых обновляет общий счетчик.

Если бы этот код был правомерным, это было бы не слишком хорошо. Приращение matchCount++ неатомарно, и нет никакого способа узнать, что произойдет, если несколько потоков выполнят этот код одновременно.

Внутренние классы могут также захватывать значения из охватывающей области. До Java 8 внутренние классы могли иметь доступ только к локальным final переменным. Это правило теперь ослаблено для соответствия правилу для лямбда-выражений. Внутренний класс может получить доступ к любой эффективно final локальной переменной; то есть, к любой переменной, значение которой не изменяется.

Не рассчитывайте, что компилятор выявит все параллельные ошибки доступа. Запрет на модификацию имеет место только для локальных переменных. Если matchCount – переменная экземпляра или статическая переменная из охватывающего класса, то никакой ошибки не будет, хотя результат так же не определен.

Кроме того, совершенно законно изменять разделяемый объект, хоть это и не очень надежно. Например,

Существуют безопасные механизмы подсчета и сбора значений одновременно. Вы можете использовать потоки для сбора значений с определенными свойствами. В других ситуациях вы можете использовать потокобезопасные счетчики и коллекции.

Как и с внутренними классами, есть обходное решение, которое позволяет лямбда-выражению обновить счетчик в локальной охватывающей области видимости. Используйте массив длиной 1, вроде этого:

Конечно, такой код не потокобезопасный. Для обратного вызова кнопки это не имеет значения, но в целом, вы должны подумать дважды, прежде чем использовать этот трюк.

Тело лямбда-выражения имеет ту же область видимости, что и вложенный блок. Здесь применяются те же самые правила для конфликтов имен. Нельзя объявить параметр или локальную переменную в лямбде, которые имеют то же имя, что и локальная переменная.

Внутри метода вы не можете иметь две локальные переменные с тем же именем. Таким образом, вы не можете объявить такие переменные также и в лямбда-выражении. При использовании ключевого слова this в лямбда-выражении вы ссылаетесь на параметр this метода, который создает лямбду. Рассмотрим, например, следующий код

Методы по умолчанию

Многие языки программирования интегрируют функциональные выражения с их библиотеками коллекций. Это часто приводит к коду, который короче и проще для понимания, чем эквивалент, использующий циклы. Например, рассмотрим цикл:

Рассмотрим такой интерфейс:

Что произойдет, если вы создадите класс, реализующий оба?

Теперь предположим, что Naming интерфейс не содержит реализацию по умолчанию для getFirstName :

Если ни один интерфейс не обеспечивает реализацию по умолчанию для общего метода, то мы находимся в пре-Java 8 ситуации и нет никакого конфликта. У класса реализации есть две возможности: реализовать метод или оставить его нереализованным. В последнем случае класс сам является абстрактным.

Мы только что обсудили конфликты имен между двумя интерфейсами. Теперь рассмотрим класс, расширяющий суперкласс и реализующий интерфейс, наследуя тот же метод от обоих. Например, предположим, что Person является классом и Student определяется как:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *