Матрицу а транспонировали 10 раз что получилось
С помощью калькулятора матриц вы сможете выполнять различные преобразования матриц, решать СЛАУ, а также находить некоторые характеристики, как, например, определитель, след и ранг. Подробнее о функционале и использовании калькулятора смотрите после блока с самим калькулятором.
Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: a T ij = aji
Как пользоваться калькулятором матриц
Ввод данных и функционал
Что умеет наш калькулятор матриц?
Вычисление выражений с матрицами
Вы можете вычислять различные арифметические выражения с матрицами, а также с результатами некоторых преобразований этих матриц.
Из чего могут состоять выражения?
Примеры корректных выражений
Что такое матрица?
Примеры матриц
Элементы матрицы
Некоторые теоретические сведения
Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: a T ij = aji
Главная диагональ квадратной матрицы — диагональ, которая проходит через верхний левый и нижний правый углы. Элементы главной диагонали — aii
Единичная матрица En×n — квадратная матрица из n столбцов и n строк с единицами на главной диагонали и нулями вне её.
Ранг — это максимальное количество линейно независимых строк (столбцов) этой матрицы. Обозначение: rank(A)
След — это сумма элементов, находящихся на её главной диагонали. Обозначение: tr(A) или track(A)
Умножение матрицы на число — матрица такой же размерности, что и исходная, каждый элемент которой является произведением соответствующего элемента исходной матрицы на заданное число.
Возведение в степень — умножение заданной матрицы саму на себя n-ое количество раз, где n – степень, в которую необходимо возвести исходную матрицу. Обозначение: A n
Треугольная матрица — квадратная матрица, у которой выше (верхнетреугольная матрица) или ниже (нижнетреугольная матрица) главной диагонали находятся нули.
LU-разложение — представление матрицы в виде произведения двух матриц L и U, где L — нижнетреугольная матрица с еденичной диагональю, а U — верхнетреугольная матрица. A = L·U
Сложение матриц An×m и Bn×m — матрица Cn×m, получаемая попарной суммой соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij+bij
Разность матриц An×m и Bn×m — матрица Cn×m, получаемая попарной разностью соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij-bij
Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.
Транспонирование матрицы: онлайн калькулятор
Транспонирование матрицы онлайн-калькулятором позволяет быстро получить готовое решение. Самостоятельно вычислить результат несложно. Формула, заложенная в калькулятор, экономит временные ресурсы. При этом исключены описки, которые часто возникают при замене строк и столбцов.
Сервисом можно воспользоваться, чтобы проверить собственные вычисления или взять ответ без затраты времени на расчеты и применить его для дальнейшего решения составной задачи.
Транспонирование матрицы – это замена ее строк и столбцов местами. С данной операцией вам поможет справиться наш онлайн калькулятор. Как транспонировать матрицу:
Материалы, которые помогут вам лучше разобраться в теме:
Транспонирование матрицы онлайн
Чтобы транспонировать матрицу онлайн:
Найти транспонированную матрицу онлайн понадобится при решении систем алгебраических уравнений, нахождении обратной матрицы и в других задачах линейной алгебры.
Использование калькулятора актуально для студентов и школьников с углубленным изучением математики. С помощью нашего сервиса можно получать готовое решение для самопроверки. Также быстрые ответы облегчат работу преподавателям при оценке большого количества заданий, выполненных учениками.
Автоматические вычисления помогают в подготовке к занятиям без посторонней помощи. Подробное решение примера позволяет выявить алгоритм и применять его в других задачах. Использование сервиса способствует наглядному усвоению информации и ускорению процесса обучения. Бесплатный доступ к калькулятору позволяет производить вычисления неограниченное количество раз. Для пользователей доступно не только транспонирование, но и другие операции с матрицами.
Если у вас возникли трудности с пониманием работы калькулятора, напишите об этом консультанту. Он оперативно ответит на вопросы и в случае необходимости поможет оформить заказ по выгодной цене.
Матричный калькулятор онлайн
Предупреждение
Инструкция матричного онлайн калькулятора
Кнопка в верхем левом углу матрицы открывает меню (Рис.1) для преобразования исходной матрицы (создание единичной матрицы
, нулевой матрицы
, очищать содержимое ячеек
) и т.д.
При вычислениях пустая ячейка воспринимается как нуль.
Кнопки Fn1, Fn2 и Fn3 переключают разные группы функциий.
Нажимая на вычисленных матрицах открывается меню (Рис.2), что позволяет записать данную матрицу в исходные матрицы и
, а также преобразовать на месте элементы матрицы в обыкновенную дробь, смешанную дробь или в десятичное число.
Вычисление суммы, разности, произведения матриц онлайн
Матричным онлайн калькулятором можно вычислить сумму, разность или произведение матриц. Для вычисления суммы или разности матриц, необходимо, чтобы они были одинаковой размерности, а для вычисления произведения матриц, количество столбцов первой матрицы должен быть равным количеству строк второй матрицы.
Для вычисления суммы, разности или произведения матриц:
Вычисление обратной матрицы онлайн
Матричным онлайн калькулятором можно вычислить обратную матрицу. Для того, чтобы существовала обратная матрица, исходная матрица должна быть невырожденной квадратной матрицей.
Для вычисления обратной матрицы:
Для подробного вычисления обратной матрицы по шагам, пользуйтесь этим калькулятором для вычисления обратной матрицы. Теорию вычисления обратной матрицы смотрите здесь.
Вычисление определителя матрицы онлайн
Матричным онлайн калькулятором можно вычислить определитель матрицы. Для того, чтобы существовал определитель матрицы, исходная матрица должна быть невырожденной квадратной матрицей.
Для вычисления определителя матрицы:
Для подробного вычисления определителя матрицы по шагам, пользуйтесь этим калькулятором для вычисления определителя матрицы. Теорию вычисления определителя матрицы смотрите здесь.
Вычисление ранга матрицы онлайн
Матричным онлайн калькулятором можно вычислить ранг матрицы.
Для вычисления ранга матрицы:
Для подробного вычисления ранга матрицы по шагам, пользуйтесь этим калькулятором для вычисления ранга матрицы. Теорию вычисления ранга матрицы смотрите здесь.
Вычисление псевдообратной матрицы онлайн
Матричным онлайн калькулятором можно вычислить псевдообратную матрицу. Псевдообратная к данной матрице всегда существует.
Для вычисления псевдообратной матрицы:
Удаление линейно зависимых строк или столбцов матрицы онлайн
Матричным онлайн калькулятор позволяет удалить из матрицы линейно зависимые строки или столбцы, т.е. создать матрицу полного ранга.
Для удаления линейно зависимых строк или столбцов матрицы:
Скелетное разложение матрицы онлайн
Для проведения скелетного разложения матрицы онлайн
Решение матричного уравнения или системы линейных уравнений AX=B онлайн
Для решения матричного уравнения:
Исключение Гаусса или приведение матрицы к треугольному (ступенчатому) виду онлайн
Матричный онлайн калькулятор проводит исключение Гаусса как для квадратных матриц, так и прямоугольных матриц любого ранга. Сначала проводится обычный метод Гаусса. Если на каком то этапе ведущий элемент равен нулю, то выбирается другой вариант исключения Гаусса с выбором наибольшего ведущего элемента в столбце.
Для исключения Гаусса или приведения матрицы к треугольному виду
LU-разложение или LUP-разложение матрицы онлайн
Построение ядра (нуль-пространства) матрицы онлайн
С помощью матричного калькулятора можно построить нуль-пространство (ядро) матрицы.
Для построения нуль-пространства (ядра) матрицы:
Ортогонализация Грамма-Шмидта и Ортонормализация Грамма-Шмидта онлайн
С помощью матричного калькулятора можно сделать ортогонализацию и ортонормализацию Грамма-Шмидта матрицы онлайн.
Для ортогонализации или ортонормализации матрицы:
Матрицу а транспонировали 10 раз что получилось
Произведение матриц
Это он-лайн сервис в два шага:
Умножение матрицы на вектор
Умножение матрицы на вектор можно найти, воспользовавшись сервисом умножение матриц
(Первым сомножителем будет данная матрица, вторым сомножителем будет столбец, состоящий из элементов данного вектора).
Обратная матрица
Это он-лайн сервис в два шага:
Определитель матрицы
Это он-лайн сервис в один шаг:
Транспонирование матрицы
Здесь Вы сможете отследить алгоритм транспонирования матрицы и научиться самому решать подобные задачи.
Это он-лайн сервис в один шаг:
Ранг матрицы
Это он-лайн сервис в один шаг:
Собственные значения матрицы и собственные вектора матрицы
Это он-лайн сервис в один шаг:
Возведение матрицы в степень
Это он-лайн сервис в два шага:
Возведение матрицы в отрицательную степень
Комплексно-сопряженные матрицы
Этот калькулятор находит эрмитово-сопряженную матрицу и комплексно-сопряженную Дирака
Комплексно-сопряженная матрица онлайн.
Разложение матриц
Данные калькуляторы дают QR-разложение, LU-разложение, разложение Холецкого матриц онлайн:
Приведение матрицы к треугольному виду
Этот калькулятор возвращает матрицу, приведенную к верхнетреугольному виду и нижнетреугольному виду
Перейти к «треугольный вид матрицы».
Сумма матриц
Это он-лайн сервис сложения в два шага:
Умножение матрицы на число
Вычитание матриц
Это он-лайн сервис в три шага:
Где учитесь?
Для правильного составления решения, укажите:
Решение матриц.
Решение матриц – это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица – таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n.
Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:
Основные виды матриц:
Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а12=а21, а13=а31,….а23=а32…. аm-1n=аmn-1, то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.
Далее приведем основные методы решения матриц.
Методы решения матриц.
Почти все методы решения матрицы заключаются в нахождении ее определителя n-го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.
Нахождение определителей 2-го порядка.
Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:
Методы нахождения определителей 3го порядка.
Ниже приведены правила для нахождения определителя 3го порядка.
Правило треугольника при решении матриц.
Упрощенно правило треугольника, как одного из методов решения матриц, можно изобразить таким образом:
Правило Саррюса при решении матриц.
При решении матриц правилом Саррюса, справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком «+»; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком «-«:
Разложение определителя по строке или столбцу при решении матриц.
Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.
Приведение определителя к треугольному виду при решении матриц.
При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.
Теорема Лапласа при решении матриц.
Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ – это определитель n-го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k ≤ n – 1. В таком случае сумма произведений всех миноров k-го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.
Решение обратной матрицы.
Последовательность действий для решения обратной матрицы:
Решение систем матриц.
Для решения систем матриц наиболее часто используют метод Гаусса.
Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.
Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.