Сигнал power good что это
О роли сигнала Power_Good в блоке питания
Блок питания компьютера не только выдает необходимое напряжение для работы компонентов, но и приостанавливает работу системы до того момента, пока параметры напряжения не достигнут определенных критериев. Другими словами, блок питания не включит компьютер при неправильном уровне напряжения питания.
Каждый блок питания перед получением разрешения на старт системы выполняет внутреннюю проверку и измерение параметров выходного напряжения. После этого на материнскую плату отправляется сигнал Power_Good (напряжение в норме). Пока такой сигнал не поступит, компьютер не включится.
Уровень напряжения Power_Good – порядка +5 вольт (нормальным считается значение от +2,4 до +6 вольт). Вырабатывается он БП после завершения внутреннего тестирования и выхода на рабочий режим и обычно подается через 0,1-0,5 секунд после нажатия кнопки включения. Подается сигнал на материнскую плату, после чего микросхема тактового генератора формирует сигнал начальной установки центрального процессора.
Если сигнал Power_Good отсутствует, микросхема тактового генератора в постоянном режиме отправляет на процессор команду сброса, не давая компьютеру работать при нестабильном или нештатном напряжении питания. После того, как сигнал Power_Good вновь подается на генератор, команда сброса отключается, и начинается выполнение инструкций, записанных по адресу FFFF:0000.
Если выходное напряжение блока питания выходит за рамки номинального (к примеру, при понижении напряжения в электросети), сигнал Power_Good пропадает, и процессор автоматически останавливается. При восстановлении номинального напряжения снова генерируется сигнал Power_Good, и ПК начинает функционировать так, как будто включение только произошло. Вследствие быстрого отключения Power_Good персональный компьютер «не замечает» сбоев в системе питания, поскольку завешает работу до того, как появляются проблемы, связанные с неустойчивым напряжением (например, ошибки четности). Однако, когда такие сбои происходят в течение длительного времени, стоит обратиться в ремонт компьютеров на дому, либо же самостоятельно заменить блок питания.
В правильно спроектированных блоках питания отправка сигнала Power_Good не подается до стабилизации всех напряжений после включения. В плохо спроектированных устройствах (можно встретить в дешевых моделях) задержка сигнала нередко слишком маленькая, и процессор слишком рано начинает работу. Обычно сигнал задерживается на 0,1-0,5 секунд.
СОБЕРИ САМ
Блоки питания: конструкция, форм-факторы и спецификации
Сигнал Power_Good
Помимо обеспечения питания компонентов ПК, блок питания гарантирует, что система не запускается, если выходные напряжения не достаточны для правильной работы. Иными словами, БП должен защищать компьютер от включения и операций до тех пор, пока выходные напряжения не будут находиться в рабочем диапазоне.
Блок питания должен завершить внутреннюю проверку и тестирование до того, как позволить системе осуществлять запуск. Если тестирование прошло успешно, то блок питания посылает специальный сигнал материнской плате, называющийся Power_Good. Этот сигнал должен постоянно поддерживаться для обеспечения стабильной работы системы. Поэтому, в случае скачка напряжения в сети переменного тока, когда блок питания не может обеспечить выходные напряжения в допустимом диапазоне, сигнал Power_Good не поступает на материнскую плату или слишком низок, что автоматически приводит к перезагрузке системы. Причём, система не загрузится до тех пор, пока не получит сигнал Power_Good снова.
Сигнал Power_Good (который иногда называется Power_OK или PWR_OK) имеет номинальное напряжение +5 В (колебания в пределах от +2,4 В до +6 В обычно считаются допустимыми), который поступает к материнской плате от блока питания после того, как он проходит самотестирование и выходные напряжения стабилизированы. Как правило, самотестирование занимает от 100 до 500 мс после нажатия на кнопку Power. Затем БП посылает сигнал Power_Good на материнскую плату, где его получает чип управления питанием процессора.
При отсутствии сигнала Power_Good чип управления питанием процессора удерживает линию reset, не позволяя системе запускаться. Когда чип получает сигнал Power_Good, он отпускает линию reset и процессор начинает исполнять программный код, начиная с адреса FFFF0h, забронированного под ROM материнской платы.
Если блок питания не может сохранить правильные напряжения (например, в случае скачка напряжения в сети), сигнал Power_Good отменяется и процессор автоматически перезапускается. Если напряжения на выходах БП возвращаются к нормальным значениям, то блок питания восстанавливает сигнал Power_Good и система возвращается к рабочему состоянию (точно так же, как если бы вы только включили компьютер).
Отменяя сигнал Power_Good до того, как выходные напряжения выйдут из-под контроля, система никогда не получит неправильного питания, так как оно будет быстро отключено, прежде чем компоненты ПК смогли бы получить нестабильное или неправильное питание, которое может привести к ошибкам памяти или иным проблемам.
На системах, предшествовавших стандарту ATX, сигнал Power_Good обеспечивался через разъём P8-1 (P8 pin 1) от блока питания к материнской плате. ATX, BTX и более поздние системы используют контакт pin 8 от 20/24-контактного основного разъёма питания, который обычно окрашен в серый цвет.
Блок питания с правильной конструкцией задерживает отправление сигнала Power_Good до тех пор, пока все напряжения на выходе не стабилизируются. Дешёвые БП зачастую не обеспечивают необходимую задержку сигнала Power_Good и позволяют процессору запускаться слишком рано (нормальная задержка сигнала Power_Good составляет 0,1-0,5 секунд). Неправильная задержка также приводит к повреждению CMOS-памяти на некоторых системах.
Если вы находите, что система постоянно не может обеспечить загрузку непосредственно после того, как вы нажали на кнопку включения, но что она впоследствии загружается при нажатии на кнопку Reset или комбинации Ctrl+Alt+Delete на клавиатуре, наиболее вероятно, что проблема заключается в задержке Power_Good. Вам следует поставить новый, качественный блок питания и проверить, решит ли это возникшую проблему.
Форм-факторы блоков питания
Форма и основная физическая компоновка того или иного компонента ПК называется форм-фактором. Компоненты, которые имеют общий форм-фактор, являются взаимозаменяемыми, во всяком случае, что касается их размеров и формы. Проектируя ПК, инженеры имели возможность выбрать один из популярных стандартов форм-фактора БП, либо могли использовать свою собственную конструкцию, отличающуюся от стандартной. Соответствие стандартному форм-фактору означает возможность быстро и недорого заменить один стандартный компонент на аналогичный. Второй вариант предполагает дополнительные затраты и время, которые потребуются для замены компонентов. Кроме того, блок питания, в таком случае, является уникальным для системы и обычно требует для замены БП того же производителя. Таким образом, замена блока питания и любой апгрейд системы осуществить существенно сложнее и, как правило, дороже.
Таким образом, при прочих равных условиях предпочтение следует отдать ПК, в котором используются стандартные комплектующие. Это позволит быстро и недорого заменить отдельные компоненты ПК в случае выхода их из строя или при замене на более производительные. Совместимость со стандартом обеспечивает, кроме того, и более широкий выбор различных компонентов, которые производятся разными производителями и имеют более обоснованную цену ввиду наличия конкурентов.
Новый форм-фактор блоков питания определила в 1995 году компания Intel, представив стандарт ATX. Стандарт ATX обрёл популярность в 1996 и начал отходить от предыдущего стандарта на основе разработки IBM. ATX и те стандарты, которые последовали за ним, с тех пор стали использовать отличные от форм-фактора IBM разъёмы с дополнительными выходными напряжениями и сигналами, которые позволяли обеспечить более высокую мощность и дополнительные возможности, которые отсутствовали у компьютеров с форм-фактором AT.
Хотя два блока питания могут иметь общий дизайн и форм-фактор, они могут различаться по мощности и качеству. В дальнейшем мы расскажем здесь об основных особенностях и характеристиках, на которые следует обращать внимание при выборе блока питания для ПК.
Существовало более 10 различных форм-факторов блоков питания, которые претендовали на статус отраслевого стандарта. Многие из них были основаны на дизайне IBM, созданном в конце 80-х годов прошлого века, в то время как остальные основаны на дизайне Intel, созданном в середине 90-х и просуществовавшим вплоть до настоящего времени. Отраслевые стандарты в отношении блоков питания можно разделить на две основных категории: те, которые уже в значительной степени устарели, и те, которые применяются в современных ПК.
В частности, все современные форм-факторы ATX материнских плат со слотами PCI-E имеют два основных коннектора питания, включая 24-контактный разъём ATX наряду с 4-контактным разъёмом +12 В. Все современные форм-факторы блоков питания имеют те же самые разъёмы, в связи с чем их можно подключать к данным материнским платам (ATX, BTX, плюс всевозможные уменьшенные варианты обоих стандартов). Таким образом, практически любой современный форм-фактор блоков питания можно подключить к современной материнской плате.
Современные отраслевые стандарты форм-факторов блоков питания | |||
Современные форм-факторы БП | Когда были представлены | Тип коннекторов материнской платы | Форм-факторы материнских плат |
ATX/ATX12В | 1995 | Основной 20/24-pin, плюс 4-pin +12 В | ATX, microATX, BTX, microBTX |
SFX/SFX12В*/PS3 | 1997 | Основной 20/24-pin, плюс 4-pin +12 В micro | ATX, FlexATX, microBTX, picoBTX, Mini-ITX, DTX |
EPS/EPS12В | 1998 | Основной 24-pin, плюс 8-pin +12 В | ATX, extended ATX |
TFX12В | 2002 | Основной 20/24-pin, плюс 4-pin +12 В | microATX, FlexATX, microBTX, picoBTX, Mini-ITX, DTX |
CFX12В | 2003 | Основной 20/24-pin, плюс 4-pin +12 В | microBTX, picoBTX, DTX |
LFX12В | 2004 | Основной 24-pin, плюс 4-pin +12 В | picoBTX, nanoBTX, DTX |
Flex ATX | 2007 | Основной 24-pin, плюс 4-pin +12 В | microATX, FlexATX, microBTX, picoBTX, nanoBTX, Mini-ITX, DTX |
* SFX12В также включает форм-фактор PS3, являющийся укороченной версией ATX12В.
Версия с питанием +12 В оснащены 4-контактным, либо 8-контактным разъёмом +12 В. Теоретически, вы можете столкнуться с устаревшими блоками питания, если работаете на компьютере, собранном с конца 1980-х вплоть до середины 90-х. Основные устаревшие форм-факторы мы приводим в следующей таблице.
Устаревшие отраслевые стандарты форм-факторов блоков питания | |||
Устаревшие форм-факторы БП | Когда были представлены | Тип коннекторов материнской платы | Форм-факторы материнских плат |
*PC/XT | 1981 | PC/XT | PC/XT, Baby-AT |
AT/Desk | 1984 | AT | Full-size AT, Baby-AT |
AT/Tower | 1984 | AT | Full-size AT, Baby-AT |
Baby-AT | 1984 | AT | Full-size AT, Baby-AT |
**LPX (PS/2) | 1987 | AT | Baby-AT, Mini-AT, LPX |
* Разъёмы PC/XT идентичны AT, за исключением одного провода +5 В (P8 pin 2), который в них не использовался.
** LPX также иногда называют PS/2 или Slimline.
О сигнале Power Good (PWR_OK) в ATX блоках питания
При запуске любого блока питания стандарта ATX схемой мониторинга формируется контрольный сигнал «Питание в норме» (Power Good или PWR_OK), равный +5 вольт (с разбросом от +2,4 до +5 В).
Требования к форме сигнала PG (PWR_OK):
Время задержки появления сигнала PWR_OK согласно стандарту ATX должно быть в пределах 0,1-0,5 секунд. Если сигнал PG подается слишком рано, может быть повреждена CMOS-память на материнке, что приведет к неисправности, из-за которой она впоследствии не сможет стартовать.
Блок питания при полной загрузке (full load) должен формировать выходные напряжения в пределах нормы, включая сигнал PG, даже при пропадании на время до 17ms (включительно) питающего переменного тока (эта задержка называется AC loss to PWR_OK hold-up time или Voltage Hold-up Time).
Время задержки появления сигнала T3 «Питание в норме» должно быть менее 500ms, в идеальном случае – менее 250ms, равно или больше 100ms:
На рисунке выше представлены временные диаграммы, согласно которым должны появляться питающие напряжения у блока питания стандарта ATX.
Здесь VAC – это входное сетевое питающее переменное напряжение (Voltage AC), PS_ON# — это сигнал включения, Outputs – контролируемые выходные напряжения.
Нормы напряжений БП, обеспечивающие появление сигнала Power Good
Сигнал PG должен появляться тогда, когда напряжение на выходах БП по линиям +5V, +3.3 V и +12V соответствует норме.
Напряжения на этих выходах должны быть в пределах: от 4,75 до 5,25, от 3,14 до 3,47 и 11,4-12,6 вольт соответственно.
Кроме того, питающее устройство должно обеспечивать заявленный уровень тока/мощности (энергии) для конечных потребителей.
Требования к номиналам выходных постоянных напряжений (DC) в блоках питания ATX:
Как используется сигнал PG от блока питания в компьютере?
На материнскую плату сигнал Power Good (PG) подается через восьмой контакт 20 (24)-контактного разъема БП (серый):
Распиновка 24-пиновой колодки питания источника стандарта ATX:
При наличии сигнала PG на материнской плате запускается генерация тактовой частоты CPU. При этом отключается сигнал начальной установки процессора и начинается выполнение программы BIOS, записанной в ROM по адресу FFFF:0000.
Если сигнал PG отсутствует, микросхема блока тактового генератора материнской платы продолжает периодически подавать на процессор сигнал его начальной установки, тем самым не давая ему работать в штатном режиме.
Это приводит к периодическому запуску процессора и включению вентилятора, установленного на его кулере.
Пропадание сигнала PG может происходить не только из-за неисправности в блоке питания, но и из-за проблем на материнской плате, например, при пробое силовых ключей в цепи питания процессора, что приводит к короткому замыканию и срабатыванию защиты от перегрузки/КЗ в БП.
Сигнал Power Good должен пропадать при уходе контролируемых напряжений от нормы и при пропадании напряжения в питающей сети на время не более 17 мс.
Любой компьютерный БП должен сохранять свою работоспособность при напряжениях 90-135 или 180-265 вольт (номинальное переменное напряжение 115 и 230 вольт соответственно) при частоте от 47 до 63 Герц:
Первичная проверка работоспособности компьютерного блока питания
Простейшая проверка блока питания заключается в проведении следующих шагов на 20 (24)-пиновом разъеме питания:
Технологии защиты в ATX-блоках питания.
Сигнал Power Good
Когда мы включаем блок питания, напряжения на выходе не сразу достигают нужного значения, а примерно через 0.02 секунды, и чтобы исключить подачу пониженного напряжения на компоненты ПК, существует специальный сигнал «power good», также иногда называемый «PWR_OK» или просто «PG», который подаётся, когда напряжения на выходах +12В, +5В и +3.3В достигают диапазона корректных значений. Для подачи этого сигнала выделена специальная линия на ATX разъёме питания, подключаемого к материнской плате (№8, серый провод).
Этот сигнал подаётся схемой мониторинга или ШИМ-контроллером (широтно-импульсная модуляция, применяемая во всех современных импульсных БП, из-за чего они и получили своё название, английская аббревиатура – PWM, знакомая по современным кулерам – для управления их частотой вращения подаваемый на них ток модулируется подобным образом.)
Защита от подачи пониженного и повышенного напряжения (UVP/OVP)
Некоторую проблему составляет то, что и OVP, и UVP обычно сконфигурированы так, что точки срабатывания находятся слишком далеко от номинального значения напряжения и в случае с OVP это является прямым соответствием стандарту ATX12V:
Выход | Минимум | Обычно | Максимум |
+12 V | 13.4 V | 15.0 V | 15.6 V |
+5 V | 5.74 V | 6.3 V | 7.0 V |
+3.3 V | 3.76 V | 4.2 V | 4.3 V |
Т.е. можно сделать БП с точкой срабатывания OVP по +12В на 15.6В, или +5В на 7В и он всё ещё будет совместим со стандартом ATX12V.
Производители выбирают значения точек срабатывания используя ту или иную микросхему мониторинга или ШИМ-контроллера, потому что значения этих точек жёстко заданы спецификациями той или иной конкретной микросхемы.
Как пример возьмём популярную микросхему мониторинга PS223, которая используется в некоторых блоках питания, которые до сих присутствуют на рынке. Эта микросхема имеет следующие точки срабатывания для режимов OVP и UVP:
Выход | Минимум | Обычно | Максимум |
+12 V | 13.1 V | 13.8 V | 14.5 V |
+5 V | 5.7 V | 6.1 V | 6.5 V |
+3.3 V | 3.7 V | 3.9 V | 4.1 V |
Выход | Минимум | Обычно | Максимум |
+12 V | 8.5 V | 9.0 V | 9.5 V |
+5 V | 3.3 V | 3.5 V | 3.7 V |
+3.3 V | 2.0 V | 2.2 V | 2.4 V |
Другие микросхемы предоставляют другой набор точек срабатывания.
И ещё раз напоминаем вам, насколько далеко от нормальных значений напряжения обычно сконфигурированы OVP и UVP. Для того, чтобы они сработали, блок питания должен оказаться в весьма сложной ситуации. На практике, дешёвые БП, не имеющие кроме OVP/UVP других типов защиты, выходят из строя раньше, чем срабатывает OVP/UVP.
Защита от перегрузки по току (OCP)
Более того, иногда разобраться, используется ли в данном конкретном БП отдельная защита по току для каждой линии +12В можно, только разобрав его и посмотрев на количество и подключение шунтов, используемых для измерения силы тока (в некоторых случаях количество шунтов может превышать количество линий, поскольку для измерения силы тока на одной линии могут использоваться несколько шунтов).
Различные типы шунтов для измерения силы тока.
Ещё одним интересным моментом является то, что в отличие от защиты от повышенного/пониженного напряжения допустимый уровень тока регулируется производителем БП, путём подпаивания резисторов того или иного номинала к выходам управляющей микросхемы. А на дешёвых БП, несмотря на требования стандарта ATX12V, эта защита может быть установлена только на линии +3.3В и +5В, либо отсутствовать вовсе.
Защита от перегрева (OTP)
В блоках питания можно увидеть термистор, прикреплённый к радиатору (хотя в некоторых БП он может быть припаян прямо к печатной плате). Этот термистор соединён с цепью управления скоростью вращения вентилятора, он не используется для защиты от перегрева. В БП, оборудованных защитой от перегрева, обычно используется два термистора – один для управления вентилятором, другой, собственно для защиты от перегрева.