Светодиодные фары со статичной подсветкой поворотов что это
Наш выбор — фары проекционного типа. Что это за зверь?
С недавних пор в автомобилестроении все чаще применяют фары проекционного типа. Что это даёт при эксплуатации, рассмотрим в этой статье.
Вообще эффективность любых фар с учётом современного законодательства заключается в оптимальном сочетании фокусированного яркого света и соблюдении светотеневой границы, которая принята по европейским нормам. Иными словами, водитель должен как можно лучше видеть дорогу, но при этом не слепить других участников движения на встречной полосе. Россия приняла европейскую систему, которая предполагает строгий контроль за слепящей силой света, еще в советское время. Соответственно, у нас допускается эксплуатация лишь тех автомобилей, которые оснащены соответствующими фарами.
Большинство фар на российских дорогах долгое время были параболическими. Однако сегодня большинство иномарок имеют линзованные фары проекционного типа. Что это даёт автомобилисту?
Во-первых, линзованные проекционные фары позволяют значительно улучшить качество освещения без применения ксеноновых ламп, которые, как известно, сильно ослепляют встречного водителя.
Во-вторых, проекционная фара устанавливается в целый комплекс из модулей: дальний, ближний свет, противотуманная лампа, поворотник и габариты. Это придаёт эстетичный внешний вид автомобилю.
В-третьих, такая фара относится к прожекторной оптике, то есть линза собирает свет в единый пучок. Получается, что проезжая часть лучше и шире освещена, при этом освещение равномерное и создает чёткую светотеневую границу.
Проекционные фары с эллипсоидными отражателями завоевали большую популярность среди автомобилистов. Среди их неоспоримых преимуществ:
В салоне Саранск-Автостекло вы можете найти любые фары проекционного типа. Что это, вы уже знаете, достаточно лишь выбрать нужную модель к вашему автомобилю. Ремонт и полировка таких фар будет качественно выполнен в нашем сервисе.
Как это устроено: Адаптивный свет
Первый автомобиль, оснащенный системой адаптивного света, появился в 1968 году. Это был Citroen DS и на нем стоял свет от Cibie. По задумке такие фары должны были помогать водителям вовремя замечать препятствия ночью. Фары, которые поворачиваются вслед за движениями рулевого колеса — вероятно, лучшее изобретение инженеров компании Cibie. В одном из предыдущих постов мы рассказывали, что всего эта французская компания, ныне являющаяся частью концерна Valeo, получила более 400 патентов. Многие из них были прорывными и стали началом целых направлений производства автокомпонентов. К такой инновации относится и уже упомянутое изобретение, положившее начало тому, что мы знаем сегодня как адаптивный свет.
Опыт Cibie пытались повторить и другие компании, но все сталкивались с одной и той же проблемой — из-за жесткой механической связи фары не всегда успевали освещать дорогу, если автомобиль двигался на большой скорости. Долгое время адаптивный свет был скорее игрушкой, чем инновацией. Но, после объединения Cibie и Valeo, усилия инженеров обеих компаний принесли свои плоды. Системы, делавшие ночное вождение безопасным эволюционировали сумасшедшими темпами. Расскажем, как это было. А в конце статьи, как обычно — конкурс. В этот раз, мы разыграем среди подписчиков сувенирную продукцию — кружку, куртку, безрукавку и поло. Чтобы стать участником, поставьте лайк этому посту и напишите в комментариях, почему вам эта статья понравилась.
Поворотный свет AFS
В начале 2000 года под брендом Valeo на рынке появилась система адаптивного головного освещения — AFS. Первая версия системы опиралась на принципы динамического адаптивного света — при повороте рулевого колеса, фары поворачивались на определенный угол. В отличие от первых разработок Cibie, руль не был жестко связан с фарой. При повороте обеспечивалось оптимальное освещение. Во время движения на больших скоростях использовалась функция Fixed Bending Lights (FBL) — фары автомобиля поворачивались на угол до 45 градусов при повороте руля. Первым автомобилем, оснащенным системой FBL был Porsche Cayenne с дополнительным эллиптическим модулем внутри фары.
Система FBL хорошо работала на средних и высоких скоростях, но не обеспечивала должный уровень освещения в городе. Решением проблемы стало новое изобретение инженеров Valeo — систему статичного поворотного света Corner. При повороте руля или включении сигнала поворота на небольшой скорости включался свет в противотуманной фаре — с той стороны, в которую повернули руль. Сегодня подобные световые модули можно встретить в противотуманных фарах — например, в BMW X3, или непосредственно в самой фаре — в Citroën C5.
Тем временем, эволюция продолжалась. При скоростном движении по трассе на помощь водителю пришла функция динамического поворотного света — Dynamic Bending Lights (DBL). Специальный модуль освещения направлял световой луч в сторону в зависимости не только от угла поворота руля, но и от скорости автомобиля. Система DBL помогла увеличить видимость на поворотах в два раза.
Таким образом, первое поколение адаптационных систем позволило улучшить видимость, направляя освещение на дорогу, и небольшими шагами изменяя отклонения луча с помощью электродвигателей с электроприводом.
Поворотный свет с автоматическим переключением Full AFS
Следующий этап эволюции системы адаптивного света — автоматическое переключение между режимами в зависимости от дорожной обстановки и погодных условий. Новая система появилась в 2004 году и называлась Full AFS — она была полностью автоматической. Инженеры Valeo создали конструкцию, которая не ослепляла встречных водителей и обеспечивала комфортное ночное вождение.
Full AFS впервые установили на Audi Q7 2009 года выпуска. Инновация использовалась в полной комплектации автомобиля и проходила под названием Tri-Xenon. Система сочетала в себе функции дальнего света, ближнего света и светодиодные дневные ходовые огни.
Система Full AFS автоматически переключалась в разные режимы в зависимости от местности и погодных условий. «Разные режимы» — это сочетания нескольких типов освещения — ближнего и дальнего света с одновременным поворотом фар в вертикальной и горизонтальной плоскостях, а также автоматическое прицеливание и разделение света.
Система Full AFS непрерывно адаптировала освещение от фар в соответствии с текущей обстановкой. Информацию о внешнем мире она получала с помощью датчиков, которые определяют условия окружающего освещения, уровень света от встречных автомобилей и степень освещенности дороги.
Если скорость автомобиля ниже 55 км/ч и при этом дорога проходит среди зданий, но не имеет уличного освещения, включался «городской режим», который предотвращает ослепление других участников дорожного движения. Кроме этого, расширенное освещение ближнего поля позволяло заблаговременно заметить пешехода на краю дороги.
Если стеклоочиститель работал в течение двух минут, а датчики показывали повышенную влажность, то включается режим плохой погоды. Он помогал избежать «зеркального» эффекта на поверхности асфальта. При этом создавалось более широкое рассеивание света и тем самым улучшалась видимость в условиях дождя, тумана или снега.
Неослепляющий дальний свет GFHB
Система Full AFS помогла обеспечить хорошую видимость ночью и при этом не ослеплять водителей встречных автомобилей, но не была совершенной. Например, если речь шла о скоростном движении на извилистых участках дороги. В таких случаях приходилось вручную переключать дальний свет на ближний, чтобы не ослеплять других водителей.
Для решения этой проблемы инженеры Valeo разработали новое поколение системы адаптивного света — Glare-Free High Beam, что переводится дословно как «неослепляющий дальний свет». Это изобретение стало следующим этапом в развитии адаптивного света.
Новая система состояла из фронтальной камеры, мощного программного обеспечения, а также интеллектуальной светотехники. GFHB могла автоматически затемнять те области на дороге, в которых находятся встречные автомобили. Это было удобно в первую очередь тем, что позволяло всегда использовать дальний свет.
Когда камера обнаруживала другие машины, система автоматически затемняла зону, в которой находились встречные авто. При этом, затемненный сектор не был статичным — он перемещался вслед за встречной машиной. Зона непосредственно перед автомобилем, в свою очередь, постоянно освещалась стандартным ближним светом. Первая версия GFHB под названием BeamAtic® Premium была запущена в 2010 году — для ксеноновых фар.
Вот как это работало: когда камера «ловила» встречный автомобиль, специальный экран внутри фары закрывал часть светового потока. Причем затенялась именно та область на трассе, где находился встречный автомобиль. Этот же алгоритм включался, если автомобиль ехал в одном направлении с вашей машиной. Система Valeo Glare-Free High Beam устанавливается на автомобили Volkswagen c 2010 года.
Следующий этап развития неослепляющего света стал реальным благодаря массовому распространению светодиодов — так называемых, LED-технологий. В таких системах используется не один светодиод, а матрицы — светодиодные блоки, в состав которых входит от 10 элементов. Светодиоды помогли повысить яркость света и срок службы фар. Кроме того, LED-технологии значительно улучшили режимы работы фар на затяжных поворотах — освещение адаптировалось под радиус, и перекрестках — свет становился более рассеянным.
Базовой технологией в адаптивных светодиодных фарах стал многолучевой режим работы — Multibeam. Здесь освещение зависит от вращающегося экрана, который расположен внутри фары. Экран позволяет плавно переводить свет в разные режимы — габаритные, дневные ходовые огни, ближний и дальний свет или автоматический GFHB. Такая система используется на автомобилях Ford в моделях S-Max, Galaxy, Edge.
Еще один модуль GFHB-системы, использующийся уже в ксеноновых фарах это парусный свет — Sail Beam. Изобретение помогло нивелировать существенный недостаток ксеноновой адаптивной системы: для затемнения свое положение меняла сама фара, которая не могла быстро вернуться в исходное положение. В системе Sail Beam в фарах установлены независимые модули света, направленные над уровнем горизонта. Эти модули работают в режиме дальнего света и создают тень для встречного автомобиля, а ближний свет освещает дорогу независимо от них.
Модуль Dynamic Shadow (динамическая тень) оснащен боковым подвижным экраном, который и создает тень. Если экран полностью закрыт — включен обычный режим дальнего света. Если он приоткрывается — появляются затемненные участки. Эта система не связана с ближним светом и работает независимо от него.
Несмотря на использование светодиодов, у модулей, описанных выше все же есть некоторые недостатки. Например, если навстречу движутся два автомобиля, то система затеняет всю область между ними. Из-за экрана, который закрывает свет фары, нельзя создать сразу две темные области. Эту проблему позволил решить инженерный гений Valeo. Так появился модуль Matrix Beam — сегодня его можно увидеть на автомобилях Audi. Здесь конкретный светодиодный модуль отвечает за свою область на дороге. Благодаря тому, что система может автоматически отключать один или несколько чипов, управляющих светодиодными матрицами, появляется возможность затенять сразу несколько участков дороги. Единственное ограничение — количество установленных матриц, а оно, в свою очередь, ограничено объемом фары.
Преодолеть это инженерное препятствие позволил модуль пиксельного света — Pixel Lighting. Луч света здесь формируется с помощью матрицы жидкокристаллического дисплея. В отличие от ксенона, в такой системе нет инфракрасного излучения, что дает возможность в несколько раз увеличить мощность источника света. Пиксельный модуль может генерировать несколько независимых друг от друга затененных областей.
Вершина технологий адаптивного света на сегодняшний день — лазерные фары. Сейчас инженеры ведут активные разработки в этом направлении. Лазерный свет гораздо интенсивнее и ярче благодаря тому, что свет распространяется в виде узкого концентрированного луча. Для сравнения, если светодиоды генерируют свет яркостью 100 лм/Вт, то мощность лазерного освещения превышает 170 лм/Вт. Это значит, что совсем скоро можно ожидать на автомобилях фары, способные светить до 500 метров в режиме дальнего света. Но, естественно, это не предел. Эволюция продолжается.
Ну, теперь, как обычно — конкурс! Кстати, результат прошлого розыгрыша — тормозных колодок — уже опубликован в предыдущем посте. В этот раз, мы разыграем среди подписчиков сувенирную продукцию — кружку, куртку, безрукавку и поло. Чтобы стать участником, поставьте лайк этому посту и напишите в комментариях, почему вам эта статья понравилась.
LED: Проекционный свет от Hella
Проекционные технологии входят в нашу жизнь, некоторые мои знакомые уже обзавелись домашними проекторами вместо обычного телевизора в зале, так что не за горами и следующий этап развития пиксельной технологии которую я показывал в этой записи.
А именно переход к проекционной технологии, наброском это выглядит так:
Это стало возможным благодаря компании Merck KGaA, разработавшей специальный жидкий кристалл.
Используя этот химический компонент, IGM Университета Штутгарта разработала и построила прототипы дисплеев. Схематично в разрезе этот дисплей весьма сложен.
Проекционный свет на прототипе с разрешением 30 000 пикселей (100 х 300). 25 светодиодов высокой мощности, расположенных в три ряда, будут служить источником света, который разделяется зеркалом на две половинки. При этом нижняя половина (отмеченная жёлтым) отвечает за заливку дорожного полотна, а верхняя за подсветку всех остальных элементов.
Сам источник света тоже управляемый (не все 25 светиков будут задействованы для ближнего света) а судя по всему поликарбонатные линзы будут иметь разделение на правосторонний и левосторонний свет.
Интересный момент — на модуле не обнаружено активное охлаждение в виде вентиляторов, то есть светодиоды будут охлаждаться естественной конвекцией через ламели радиатора снизу модуля, а выходить воздух будет с задней стороны зеркал.
Видео работы модуля на стене с презентации:
Как я понимаю исключается необходимость подвижных частей фары, за исключением наверно корректора по вертикали. И режимы работы оптики полностью развязываются от механики — свет будет формировать программное обеспечение. Возможно фары с подобными инновациями останутся по стоимости в разумных пределах.
А теперь риторический вопрос: как думаете какая марка автомобилей будет, где применят это новшество? (данный вопрос был задан в записи официального блога компании hella-russia).
Адаптивный головной свет: история, настоящее, будущее
Как сделать, чтобы фары автомобиля, во-первых, всегда светили туда, куда он едет, и во-вторых, при этом не слепили других водителей? На этот вопрос инженеры пытаются ответить уже почти сотню лет. Простота идеи компенсируется сложностью ее реализации.
Чтобы фары светили куда надо
Сначала разберемся с первой частью проблемы. Самым ранним техническим решением, призванным направить свет фар в повороты, а не на обочины, стали поворотные фары, имеющие механическую связь с рулевым управлением, — логичное, в общем, решение. Одним из первых таких автомобилей был американский Willys-Knight 70A Touring 1928 года с третьей дополнительной фарой перед решеткой радиатора, закрепленной на травéрсе, соединенной с рулевым механизмом.
Другое, более оригинальное решение было применено в 1935 году на мелкосерийной чехословацкой Tatra 77А: рефлектор третьей, центральной фары мог поворачиваться при помощи хитроумной электромагнитной системы.
Вообще, Tatra 77A уникальный автомобиль, заслуживающий отдельного обзора: обтекаемый кузов (Cx=0,212), заднемоторная компоновка, атмосферный 3,4-литровый V8 из магниевого сплава с верхним расположением клапанов, киль-плавник на крыше сзади.
Параллельно с работой над экзотическими поворотными фарами инженеры автомобильных компаний по всему миру решали и более простую задачу: сделать так, чтобы фары светили в одинаковом направлении независимо от загрузки автомобиля. Так, на Citroёn 2CV в 1948 году появился ручной корректор фар, на Panhard Dyna Z в 1954 году — автоматический. Начиная с семидесятых годов корректоры фар стали обязательными для автомобилей в Германии и ряде других стран Западной Европы. А вот усложняющие конструкцию автомобиля поворотные фары так и остались экзотикой на несколько десятков лет.
В 1967-м более сложная система поворотных фар была представлена французами на обновленной версии Citroёn DS. Благодаря механической связи с подвеской автомобиля фары не только поворачивались вправо или влево, но и меняли свой наклон относительно горизонтальной оси в зависимости от положения колес относительно кузова.
Хитрые поворотные фары Citroёn затем устанавливал как на следующие версии DS (например, на DS21 1972 года — на фото), так и на другие свои модели, скажем, на футуристическое купе SM.
Впрочем, с развитием электроники идея поворотных фар вышла на новый виток развития. Одним из пионеров стала Hella, выпустившая в 2003 году систему Dynamic Bend lighting. Основываясь на показаниях датчика поворота рулевого колеса, система поворачивала прожекторы фар при помощи электромоторов.
Технически реализовано это было следующим образом: линзованный прожектор фары был установлен на раму, поворачивающуюся относительно вертикальной оси в диапазоне +/‒15 градусов — этого достаточно для эффективной работы в поворотах радиусом до 200 метров. Например, при входе в поворот радиусом 190 метров зона, освещенная стандартными фарами ближнего света, составляет около 30 метров. Новая технология увеличила этот показатель до 55 метров.
Вот так выглядит схема фары Dynamic Bend lighting на Opel Signum 2003 года. Цифрой 1 здесь обозначен поворотный би-ксеноновый модуль, 2 — виражная фара, 3 — модуль светоотдачи, 4 — управляющий модуль, 5 — блок розжига.
А вот так — собственно поворотный модуль.
Таким образом, водитель получил возможность лучше видеть траекторию движения и больше времени для объезда препятствия или торможения в случае необходимости. Но и это еще не всё: система от Hella учитывала и скорость движения — скорость поворота фар на высокой скорости была выше, а на низкой они двигались медленнее.
А что же с ситуацией, когда водитель включил поворотник или стоит на светофоре с повернутыми колесами? В Hella подумали и об этом — в таком режиме система светила и за поворот, и прямо!
Помимо Opel Signum, такие фары устанавливались на A8 (в модификации D3).
Чтобы не слепили встречку (но при этом все равно могли заглядывать за поворот)
Смысл систем изменения положения фар заключается в том, чтобы обеспечить водителю лучшую видимость. Вместе с тем развитие технологий, а именно появление линзованных прожекторов и более мощных источников света, в том числе HID, или газоразрядных ламп (так называемый «ксенон»), увеличили риск ослепления встречных водителей мощным лучом света. Научно доказано, что после однократного ослепления дальним светом зрение водителя восстанавливается полностью лишь через 48 часов. Очевидно, что подобное негативно влияет на безопасность движения. Причем вопрос этот настолько актуален, что, к примеру, в Великобритании даже появилась инициативная группа Glaremare, продвигающая идею законодательного ограничения яркости фар.
Классическим решением этой проблемы всегда считалось переключение с яркого дальнего света на менее эффективный, но не слепящий ближний. В том числе переключение автоматическое: первые фоторезисторные системы были представлены в 1952-м компанией General Motors на новых моделях Cadillac, Buick и Oldsmobile (система называлась Autronic Eye). К началу двухтысячных наибольшее распространение получили системы, основанные на камерах со светочувствительными КМОП-матрицами.
Видите странный предмет, напоминающий фонарь, на торпедо между рулем и лобовым стеклом этого великолепного Cadillac Coupe deVille 1955 года? Это датчик освещенности Autronic Eye. К нему прилагался еще блок усилителя размером с крупный автомобильный аккумулятор, располагавшийся в районе заднего сиденья, и несколько других компонентов.
Вместе с тем в плохих погодных условиях от водителя все равно требовалось включать дополнительные противотуманные фары. То есть такие автоматические системы нельзя было назвать технически изящным решением проблемы безопасного движения в условиях недостаточной видимости.
Таким решением стала разработанная инженерами Hella в 2006 году система AFS (Advanced Front Lighting System). В ее основу легла технология проекционного типа, получившая фирменное обозначение Vario. Впервые он был реализован в версии VarioX, где «X» обозначает ксеноновый источник света; позднее появился VarioLED — со светодиодным источником.
Модуль VarioX выглядит вот так. Цифрой 1 обозначен цилиндр, изменяющий световой пучок. А вот тут драйвовчанин Berryman разбирает модуль с пристрастием.
Принцип работы следующий: между источником света (изначально — HID-лампой) и линзой располагается цилиндр, вращающийся вокруг продольной оси при помощи шагового электродвигателя. Внешняя поверхность цилиндра имеет переменную форму, что позволяет видоизменять световой пучок.
На скорости до 55 км/ч, пучок имеет четко выраженную и недалеко расположенную горизонтальную границу, чтобы не слепить других водителей. Расширенная форма пучка перед автомобилем позволяет лучше замечать пешеходов и велосипедистов.
Загородный свет включается в диапазоне 55–100 км/ч — это аналог традиционного ближнего света с тем отличием, что проекционный модуль генерирует асимметричный световой пучок, чтобы не слепить встречный поток. Граница светового пучка поднимается чуть выше, чем в городе, — для лучшей видимости. При разгоне выше 100 км/ч — в скоростном режиме — модуль обеспечивает необходимый световой пучок для прямолинейной езды и поворотов на высокой скорости.
Первые фары с AFS были штатно установлены на Mercedes E-Класс 2006-го и Opel Insignia 2008-го модельного года (на фото).
Дальний свет принципиально не отличается от такового на традиционных фарах с HID-лампой и линзовым пакетом, но не требует от водителя никаких действий для переключения в скоростной или загородный режим для предотвращения ослепления встречных автомобилей. На помощь тут приходит штатный датчик освещенности, размещенный на обратной стороне салонного зеркала заднего вида.
В плохих погодных условиях, ориентируясь на показания штатного датчика дождя и работу дворников, если те включены более двух минут подряд, система адаптирует световой пучок таким образом, чтобы рассеивание луча в каплях воды или снеге не слепило водителя. То есть затемняет участок непосредственно перед автомобилем.
Само собой, проекционный модуль, так же как и в системах Dynamic Bend, размещается в поворотной раме, что позволяет сочетать изменение формы светового пучка с поворотом фар на угол до 15 градусов в каждую сторону.
Несмотря на кажущуюся безупречность системы AFS, инженеры Hella изначально учитывали ее ограничения. Так, датчик дождя нельзя считать полноценным определителем погоды, потому что он не может отличить дождь от, например, брызг из-под колес другого автомобиля. Было очевидно, что только оптический сенсор может помочь определить снижение контрастности, характерное для условий недостаточной видимости.
В 2009 году изящество и функциональность системы AFS были дополнены оптической цифровой камерой с блоком обработки изображения. Принцип работы следующий: размещенная на лобовом стекле камера распознает встречные и попутные автомобили на дистанции до 850 метров. На основе этой информации динамически корректируется световой пучок. Помимо детекции других автомобилей, камера определяет и профиль дороги, помогая изменять вертикальное положение светового пучка на подъемах и спусках.
Впервые система AFS с камерой была установлена на Mercedes-Benz E-класса 2009 года (W212).
Использование управляющего проекционным модулем высокопроизводительного процессора, распознающего другие транспортные средства, позволяет оптимизировать работу дальнего света и предотвратить ослепление встречных водителей. Каким образом?
Световой пучок просто генерируется так, что в нем не засвечивается сектор (максимум — на 1 люкс), в котором находится встречный автомобиль. Образуется своего рода световой туннель, причем его формирование происходит динамически с учетом передвижений встречного/попутного автомобиля.
Добро пожаловать в эпоху светодиодов
В 2010 году система AFS была усовершенствована — вместо газоразрядных ламп были впервые применены светодиоды. Данная система была установлена на Audi A8. А в 2013-м электронно-механическая система AFS уступила место полностью электронной системе без подвижных элементов с аналогичным функционалом. Это стало возможным благодаря применению пяти рефлекторов и 25 светодиодов (по пять на чип/рефлектор). Каждый из светодиодов контролировался индивидуально и предназначался для освещения определенного сегмента дороги, причем их можно было не только включать и выключать, но и затемнять.
Вот она, первая серийная реализация LED Matrix для Audi A8 2013 года.
Просто отключая те или иные чипы или меняя уровень яркости (от 0 до 100 %), эта система позволяла распознавать одновременно до восьми объектов на дороге и динамически менять форму и интенсивность светового пучка. Таким образом, разработанная инженерами Hella система стала еще более функциональной.
Следующим ключевым этапом в развитии систем адаптивного головного света стала так называемая матричная система HD84, созданная в Hella совместно с Daimler AG и впервые представленная на Mercedes-Benz E-Класса W213 в 2016 году. Роль источника света в этой системе отведена специальному трехстрочному блоку из 84 светодиодов (на каждую фару).
Примечательно, что при разработке этих фар впервые была применена силиконовая линза — она способна выдерживать высочайший уровень яркости и позволяет достигать большей точности при производстве, чем традиционная оптика.
Ключевые принципы работы этой системы остались теми же: динамическая адаптация светового пучка в соответствии с трафиком, погодой и дорожными условиями. На свободной дороге вы все так же получаете максимум видимости и освещенности. Сегменты светового пучка, в которых обнаруживаются встречные или попутные автомобили, автоматически отключаются за доли секунды. Система способна отслеживать движение нескольких автомобилей одновременно.
Новая система контроля погодных условий снижает уровень отражений во время дождя, уменьшая яркость конкретных светодиодов. И еще один важный факт: матричная система HD84 стала первой полностью электронной динамической системой поворотного света в мире.
Настоящее и будущее: матричные фары с лазерным дальним светом и жидкокристаллические фары
В 2018 году компания Hella представила еще одну разработку, снова воплощенную на новом флагманском седане Audi A8 (да, и снова Audi A8!). Помимо того что в каждой фаре размещается двухстрочный источник света на 32 светодиода, фары дополнены и лазерными источниками света, которые включаются после достижения 70 км/ч, позволяя водителю различать объекты на дистанции до 600 метров — вдвое дальше по сравнению со светодиодным дальним светом.
Эта технология лазерных источников света носит название LARP – Laser Activated Remote Phosphor, то есть активирующийся лазером люминофор. Иногда эту технологию также называют «фазерной» (от фосфор+лазер). Уровень яркости таких источников света гораздо выше, чем у светодиодов. Владельцы новой Audi A8 (на фото) могут убедиться.
При этом Hella не останавливается на достигнутом. В настоящий момент в компании разработаны жидкокристаллические фары — это настоящий прорыв в области автомобильных систем головного света. Источником света тут является модуль из 25 высокомощных светодиодов, расположенных в три ряда. Между ним и проекционной линзой находится жидкокристаллический дисплей с разрешением в 100×300 пикселей с возможностью изменения цвета и яркости каждого отдельного пикселя.
Если вы с нами с самого начала этого блога, то наверняка уже видели ролик — мы публиковали его в нашем посте об истории автомобильного света.
Полученная при помощи видеокамеры и оптических датчиков скорости и расстояния (лидаров) информация обрабатывается микропроцессором, после чего попадает в блок управления, генерирующий до 60 команд регулировки пикселей в секунду по каждому отдельному пикселю. Фактически в этих фарах все зависит от программного обеспечения. Инженерам это дает практически неограниченную свободу действий. Например, помимо моментальной адаптации системы головного света к дорожным условиям, прямо на дорожное покрытие можно будет проецировать траекторию наилучшего вхождения в поворот в виде стрелок-указателей. А в новом Volkswagen Touareg, представленном этой весной, наша система IQ.Light — LED matrix headlamps (уже 128 светодиодов) научилась спасать от ослепления не только встречные и впереди идущие машины, но и собственного водителя: перед попаданием света фар на дорожные знаки видеокамера автомобиля посылает в систему освещения сигнал о временном снижении яркости светодиодов. Больше того, высокоточная система позволяет нивелировать даже свет, отражаемый от мокрой поверхности дороги.
Безопасное настоящее и еще более безопасное будущее — вот то, над чем в компании Hella работают не покладая рук уже 119 лет.
Будем рады ответить на все вопросы о системах адаптивного головного света — и ждем ваших комментариев!