Сжиженный газ в чем измеряется в каких единицах

Физико-химические свойства сжиженных углеводородных газов

Зависимость плотности от температуры

Температура, º СПропанИзобутанн-Бутан
Удельный объёмПлотностьУдельный объёмПлотностьУдельный объёмПлотность
Жидкость, л/кгПар, м 3 /кгЖидкость, кг/лПар, кг/м 3Жидкость, л/кгПар, м 3 /кгЖидкость, кг/лПар, кг/м 3Жидкость, л/кгПар, м 3 /кгЖидкость, кг/лПар, кг/м 3
минус 601,6500,9010,6061,11
минус 551,6720,7350,5981,36
минус 501,6860,5520,5931,810
минус 451,7040,4830,5872,07
минус 401,7210,3830,5812,610
минус 351,7390,3080,5753,250
минус 301,7700,2580,5653,8701,6160,6710,6191,490
минус 251,7890,2160,5594,6201,6390,6060,6101,650
минус 201,8080,18250,5535,4801,6500,5100,6061,960
минус 151,8250,1560,5486,4001,6670,4000,6002,5001,6260,6240,6151,602
минус 101,8450,1320,5427,5701,6840,3290,5943,0401,6350,5140,6121,947
минус 51,8690,1100,5359,0501,7010,2790,5883,5901,6530,4760,6052,100
01,8940,0970,52810,3401,7180,2320,5824,3101,6640,3550,6012,820
плюс 51,9190,0840,52111,9001,7420,1970,5745,0701,6780,2990,5963,350
плюс 101,9460,0740,51413,6001,7560,1690,56945,9201,6940,2540,59023,94
плюс 151,9720,0640,50715,511,7700,1440,5656,9501,7150,2150,5834,650
плюс 202,0040,0560,49917,7401,7940,1260,55737,9401,7270,1860,57095,390
плюс 252,0410,04960,49020,1501,8150,1090,55119,2101,7450,1620,57326,180
плюс 302,0700,04390,48322,8001,8360,0870,544811,501,7630,1390,56737,190
плюс 352,1100,03950,47425,301,8520,0770,54013,001,7790,1220,5628,170
плюс 402,1550,0350,46428,601,8730,0680,53414,7001,8010,1070,55529,334
плюс 452,2170,0290,45134,501,8980,0600,52716,8001,8210,09460,54910,571
плюс 502,2420,0270,44636,8001,92980,0530,518218,9401,8430,08260,542612,10
плюс 552,2880,02490,43740,2201,9490,0490,51320,5601,8660,08080,53612,380
плюс 602,3040,02240,43444,601,9800,0410,50524,2001,8800,06430,53215,400

Физические характеристики

Упругость насыщенных паров

Температура, º СЭтанПропанИзобутанн-Бутанн-ПентанЭтиленПропиленн-БутиленИзобутилен
минус 500,5530,071,0470,1000,0700,073
минус 450,6550,0881,2280,1230,0860,089
минус 400,7710,1091,4320,1500,1050,108
минус 350,9020,1341,6600,1810,1270,130
минус 301,0500,1641,9120,2160,1520,155
минус 251,2150,1972,1920,2590,1820,184
минус 201,4000,2362,4980,3080,2150,217
минус 151,6040,2850,0880,0562,8330,3620,2520,255
минус 101,8310,3380,1070,06803,1990,4230,2950,297
минус 52,0810,3990,1280,0843,5960,4970,3430,345
02,3550,4660,1530,1020,0244,0250,5750,3960,399
плюс 52,5550,5430,1820,1230,0304,4880,6650,4560,458
плюс 102,9820,6290,2150,1460,0375,0000,7640,5220,524
плюс 153,3360,7250,2520,1740,0460,8740,5940,598
плюс 203,7210,8330,2940,2050,0581,0200,6880,613
плюс 254,1370,9510,3410,2400,0671,1320,6940,678
плюс 304,4601,0800,3940,2800,0811,2800,8560,864
плюс 354,8891,2260,4520,3240,0961,4440,9600,969
плюс 401,3820,5130,3740,1141,6231,0721,084
плюс 451,5520,5900,4290,1341,8171,1931,206
плюс 501,7400,6700,4900,1572,0281,3231,344
плюс 551,9430,7590,5570,1832,2571,4641,489
плюс 602,1620,8530,6310,2122,5051,5881,645

Критические параметры

ПоказательМетанЭтанЭтиленПропанПропиленн-БутанИзобутанн-БутиленИзобутиленн-Пентан
Критическая температура, º Сминус 82,532,39,996,8491,94152,01134,98144,4155196,6
Критическое давление, МПа4,584,825,0334,214,543,7473,63,9454,103,331

Опытные коэффициенты объемного расширения βр

ПродуктПри t = 15ºСИнтервал температур, ºС
-20 / +10+10 / +40
Пропан0,003060,002900,00372
Пропилен0,002940,002800,00368
н-Бутан0,002120,002090,00220
н-Бутилен0,002030,001940,00210
Керосин0,00095
Вода0,00019
Давление, МПаТемпература, °С
20406080100
Сжиженный пропан
2,0313384
4,0293345480805
6,0277312406603929
8,0261287353480656
10,0248265311400510
15,0223227251297354
20,0205204218251294
Сжиженный н-бутан
2,0226225247321446
4,0217212227287393
6,0209201210259355
8,0202191195239327
10,0195182182223306
15,0182164164197273
20,0169151151183255

Источник

Сжиженные углеводородные газы

Сжиженный углеводородный газ (СУГ) — это углеводороды или их смеси, которые при нормальном давлении и температуре окружающего воздуха находятся в газообразном состоянии, но при увеличении давления на относительно небольшую величину без изменения температуры переходят в жидкое состояние.

Сжиженные газы получают из попутных нефтяных газов, а также газоконденсатных месторождений. На перерабатывающих заводах из них извлекают этан, пропан, а также газовый бензин. Наибольшую ценность для отрасли газоснабжения имеют пропан и бутан. Их главное преимущество в том, что их легко хранить и перевозить в виде жидкости, а использовать в виде газа. Другими словами, для перевозки и хранения сжиженных газов используются плюсы жидкой фазы, а для сжигания — газообразной.

Сжиженный углеводородный газ получил широкое применение во многих странах мира, включая Россию, для нужд промышленности, жилищного и коммунально-бытового сектора, нефтехимических производств, а также в качестве автомобильного топлива.

Сжиженный газ в чем измеряется в каких единицах. Смотреть фото Сжиженный газ в чем измеряется в каких единицах. Смотреть картинку Сжиженный газ в чем измеряется в каких единицах. Картинка про Сжиженный газ в чем измеряется в каких единицах. Фото Сжиженный газ в чем измеряется в каких единицах

Молекула пропана состоит из трех атомов углерода и восьми атомов водорода

Пропан

Для систем газоснабжения, эксплуатируемых в России, наиболее подходящим является технический пропан (C3H8), так как он имеет высокую упругость паров вплоть до минус 35°C (температура кипения пропана при атмосферном давлении — минус 42,1°C). Даже при низких температурах из баллона или газгольдера, наполненного пропаном, легко отбирать нужное количество паровой фазы в условиях естественного испарения. Это позволяет устанавливать газовые баллоны со сжиженным пропаном на улице зимой и отбирать паровую фазу при низких температурах.

Бутан

Сжиженный газ в чем измеряется в каких единицах. Смотреть фото Сжиженный газ в чем измеряется в каких единицах. Смотреть картинку Сжиженный газ в чем измеряется в каких единицах. Картинка про Сжиженный газ в чем измеряется в каких единицах. Фото Сжиженный газ в чем измеряется в каких единицах

При сгорании молекулы бутана в реакцию вступают четыре атома углерода и десять атомов водорода, что объясняет его большую теплотворную способность по сравнению с пропаном

Бутан (C4H10) — более дешевый газ, но отличается от пропана низкой упругостью паров, поэтому применяется только при положительных температурах. Температура кипения бутана при атмосферном давлении — минус 0,5°C.

Температура газа в резервуарах системы автономного газоснабжения должна быть положительной, иначе испарение бутановой составляющей СУГ будет невозможно. Для обеспечения температуры газа выше 0°C используется геотермальное тепло: газгольдер для частного дома устанавливается подземно.

Смесь пропана и бутана

В коммунально-бытовой сфере используется смесь пропана и бутана технических (СПБТ), в быту называемая пропан-бутаном. При содержании бутана в СПБТ свыше 60% бесперебойная работа резервуарных установок в климатических условия России невозможна. В таких случаях для принудительного перевода жидкой фазы в паровую применяются испарители СУГ.

Особенности и свойства СУГ

Свойства сжиженных газов влияют на меры безопасности, а также конструктивные и технические особенности оборудования, в котором они хранятся, перевозятся и используются.

Отличительные особенности сжиженных газов:

Зависимость давления насыщенных паров пропан-бутановой смеси от температуры

Сжиженный газ в чем измеряется в каких единицах. Смотреть фото Сжиженный газ в чем измеряется в каких единицах. Смотреть картинку Сжиженный газ в чем измеряется в каких единицах. Картинка про Сжиженный газ в чем измеряется в каких единицах. Фото Сжиженный газ в чем измеряется в каких единицах
Зависимость давления насыщенных паров пропан-бутановой смеси от температуры

Зависимость плотности пропан-бутановой смеси от ее состава и температуры

Таблица плотностей сжиженной пропан-бутановой смеси (в т/м³) в зависимости от ее состава и температуры

−25−20−15−10−50510152025P/B, %100/00,5590,5530,5480,5420,5350,5280,5210,5140,5070,4990,49090/100,5650,5590,5540,5480,5420,5350,5280,5210,5140,5060,49880/200,5710,5650,5610,5550,5480,5410,5350,5280,5210,5140,50570/300,5770,5720,5670,5610,5550,5480,5420,5350,5290,5210,51360/400,5830,5770,5720,5670,5610,5550,5490,5420,5360,5290,52150/500,5890,5840,5790,5740,5680,5640,5560,5490,5430,5360,52940/600,5950,5900,5860,5790,5750,5680,5620,5550,5500,5430,53630/700,6010,5960,5920,5860,5810,5750,5690,5620,5570,5510,54420/800,6070,6030,5980,5920,5880,5820,5760,5690,5650,5580,55210/900,6130,6090,6050,5990,5940,5880,5830,5760,5720,5660,5590/1000,6190,6150,6110,6050,6010,5950,5900,5830,5790,5730,567

T — температура газовой смеси (среднесуточная температура воздуха); P/B — соотношение пропана и бутана в смеси, %

Источник

Сжиженный газ в чем измеряется в каких единицах

ГОСТ Р 57431-2017
(ИСО 16903:2015)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГАЗ ПРИРОДНЫЙ СЖИЖЕННЫЙ

Liquefied natural gas. General characteristics

Дата введения 2018-01-01

Предисловие

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 52 «Природный и сжиженные газы»

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).

Сведения о соответствии ссылочных национальных стандартов стандартам, использованным в качестве ссылочных в примененном международном стандарте, приведены в дополнительном приложении ДА

6 ПЕРЕИЗДАНИЕ. Ноябрь 2019 г.

1 Область применения

Настоящий стандарт устанавливает общие характеристики сжиженного природного газа (СПГ) и криогенных материалов, используемых в индустрии СПГ. Настоящий стандарт также содержит рекомендации по вопросам охраны здоровья и техники безопасности и предназначен для использования в качестве справочного документа при практическом применении других стандартов в области сжиженного природного газа. Стандарт можно использовать в качестве справочного материала при проектировании или эксплуатации установок по производству СПГ.

2 Нормативные ссылки


В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 30852.19 (МЭК 60079-20:1996) Электрооборудование взрывозащищенное. Часть 20. Данные по горючим газам и парам, относящиеся к эксплуатации электрооборудования

ГОСТ Р 56352 Нефтяная и газовая промышленность. Производство, хранение и перекачка сжиженного природного газа. Общие требования безопасности

ГОСТ Р 56719 Газ горючий природный сжиженный. Отбор проб

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 отпарной газ (boil-off gas): Газ, образующийся при производстве, хранении и транспортировании сжиженного природного газа.

3.2 конденсат (condensate): Углеводородная жидкость, конденсирующаяся из природного газа и состоящая в основном из пентанов (Сжиженный газ в чем измеряется в каких единицах. Смотреть фото Сжиженный газ в чем измеряется в каких единицах. Смотреть картинку Сжиженный газ в чем измеряется в каких единицах. Картинка про Сжиженный газ в чем измеряется в каких единицах. Фото Сжиженный газ в чем измеряется в каких единицах)

и более тяжелых компонентов.

3.3 сжиженный природный газ [liquefied natural gas (LNG)]: Криогенная жидкость без цвета и запаха, состоящая в основном из метана, которая может содержать небольшие количества этана, пропана, бутана, азота и других компонентов, присутствующих в природном газе.

3.4 сжиженные углеводородные газы [liquefied petroleum gas (LPG)]: Углеводороды, находящиеся в газообразном состоянии при нормальных значениях температуры и давления, но легко переходящие в жидкое состояние при небольшом избыточном давлении при нормальной температуре, например пропан и бутаны.

3.5 газовый конденсат [natural gas liquids (NGL)]: Жидкая смесь углеводородов, выделяемая из сырого природного газа и содержащая этан, пропан, бутаны, пентаны и газовый бензин.

4 Сокращения

В настоящем стандарте применены следующие сокращения:

5 Общие характеристики сжиженного природного газа

5.1 Общие положения

Персонал, работающий с СПГ, должен быть ознакомлен с характеристиками природного газа в сжиженном и газообразном состояниях.

Потенциальная опасность при обращении с СПГ главным образом обусловлена тремя его важными свойствами:

b) очень небольшие объемы жидкости превращаются в большие объемы газа. Из одного объема СПГ образуется примерно 600 объемов газа;

c) природный газ, как и другие газообразные углеводороды, является легковоспламеняющимся веществом. В условиях окружающей среды концентрационные пределы воспламенения смеси паров СПГ с воздухом составляют приблизительно от 5% до 15% по объему газа. При накапливании газа в замкнутом пространстве воспламенение может привести к детонации и ударной волне вследствие избыточного давления.

В настоящем стандарте приведены свойства СПГ и потенциально опасные факторы при обращении с ним. При оценке потенциально опасных факторов объекта СПГ проектировщики должны учитывать опасности всех производственных циклов. Часто источником основной опасности является не собственно СПГ, а другие факторы, связанные с производством СПГ, такие как криогенное оборудование завода по сжижению газа или высокое давление газа на выходе установок регазификации.

СПГ является смесью углеводородов, состоящей преимущественно из метана, которая также содержит этан, пропан, азот и другие компоненты, обычно присутствующие в природном газе.

Широко применяется метод отбора проб малого потока СПГ с непрерывным испарением при помощи специального устройства (испарителя), которое предназначено для обеспечения представительности пробы регазифицированного СПГ без фракционирования.

Плотность может быть измерена непосредственно, но, как правило, ее вычисляют по составу газа, определенному методом газовой хроматографии. Для определения плотности СПГ рекомендуется использовать метод по стандарту [3].

Klosek, J., and McKinley, С., Densities of liquefied natural gas and of the low molecular weight hydrocarbons, Proceedings of 1st International Conference on LNG, 1968 (Плотность сжиженного природного газа и углеводородов с низким молекулярным весом, труды 1-й Международной конференции по СПГ, 1968).

В зависимости от компонентного состава СПГ имеет температуру кипения в диапазоне от минус 166°C до минус 157°C при атмосферном давлении. Изменение температуры кипения СПГ в зависимости от давления составляет примерно 1,25·10 °C/Па. Температуру СПГ обычно измеряют с помощью медь/медь-никелевых термопар или платиновых термометров сопротивления, например, приведенных в стандарте [4].

Вязкость СПГ зависит от состава и обычно находится в диапазоне от 1,0·10 до 2,0·10 П при температуре минус 160°C, что составляет от 1/10 до 1/5 вязкости воды. Вязкость СПГ также зависит от температуры жидкости.

5.2.5 Примеры сжиженных природных газов

Три примера типичных СПГ приведены в таблице 1 (значения физико-химических характеристик получены путем моделирования).

Свойства при температуре кипения при нормальном давлении

Источник

Сжиженный газ. Сжиженные углеводородные газы СУГ = Liquefied petroleum gas (LPG) и ШФЛУ == WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids)

Сжиженный газ. Сжиженные углеводородные газы СУГ = Liquefied petroleum gas (LPG) и ШФЛУ == WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids)

Таблица 2. Температуры самовоспламенения компонентов ШФЛУ, о С

Пропан (С3Н8)Изо-бутан (С4Н10)Н-бутан (С4Н10)Изо-пентан (С5Н12)Н-пентан (С5Н12)466462405427287

Таблица 3. Классификация СУГ в РФ: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический:

В зависимости от компонентного состава СУГ подразделяются на следующие марки:

МаркаНаименованиеКод ОКПО

(общероссийский классификатор предприятий и организаций)

ПТПропан технический02 7236 0101
ПАПропан автомобильный02 7239 0501
ПБАПропан-бутан автомобильный02 7239 0502
ПБТПропан-бутан технический02 7236 0103
БТБутан технический02 7236 0103

Таблица 4. Свойства Параметры торговых марок: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический

Наименование показателяПропан техническийПропан автомобильныйПропан-бутан автомобильныйПропан-бутан техническийБутан технический
1. Массовая доля компонентов
Сумма метана, этана и этиленаНе нормируется
Сумма пропана и пропиленане менее 75 % масс.Не нормируется
в том числе пропанане нормируетсяне менее 85±10 % масс.не менее 50±10 % масс.не нормируетсяне нормируется
Сумма бутанов и бутиленовне нормируетсяне нормируетсяне нормируетсяне более 60 % масс.не менее 60 % масс.
Сумма непредельных углеводородовне нормируетсяне более 6 % масс.не более 6 % масс.не нормируетсяне нормируется
2. Доля жидкого остатка при 20 о Сне более 0,7 % об.не более 0,7 % об.не более 1,6 % об.не более 1,6 % об.не более 1,8 % об.
3. Давление насыщенных паровне менее 0,16 МПа

не нормируетсяне нормируется
4. Массовая доля сероводорода и меркаптановой серы
в том числе сероводорода:
не более 0,013 % масс.не более 0,001 % масс.не более 0,001 % масс.не более 0,013 % масс.не более 0,013 % масс.
не более 0,003 % масс.
5. Содержание свободной водыотсутствие
6. Интенсивность запаха, баллыне менее 3

для горения, м 3 /м 3

3,5216,6614,2823,822,4230,9430,9428,5628,5638,08

Газы могут быть превращены в жидкое состояние при сжатии, если температура при этом не превышает определенного значения, характерного для каждого однородного газа. Температура при которой данный газ не может быть сжижен никаким повышением давления, называется критической температурой. Давление, необходимое для сжижения газа при этой критической температуре, называется критическим давлением.

ПоказательМетанЭтанЭтиленПропанПропиленн-БутанИзобутанн-БутиленИзобутиленн-Пентан
Критическая температура, о Сминус 82,532,39,996,8491,94152,01134,98144,4155196,6
Критическое давление, МПа4,584,825,0334,214,543,7473,63,9454,103,331

Упругостью насыщенных паров сжиженных газов называется давление, при котором жидкость находится в равновесном состоянии со своей газовой фазой. При такой двухфазной системе не происходит ни конденсации паров ни испарения жидкости. Каждому компоненту СУГ при определенной температуре соответствует определенная упругость паров, возрастающая с ростом температуры.

Температура, о СЭтанПропанИзобутанн-Бутанн-ПентанЭтиленПропиленн-БутиленИзобутилен
минус 500,5530,071,0470,1000,0700,073
минус 450,6550,0881,2280,1230,0860,089
минус 400,7710,1091,4320,1500,1050,108
минус 350,9020,1341,6600,1810,1270,130
минус 301,0500,1641,9120,2160,1520,155
минус 251,2150,1972,1920,2590,1820,184
минус 201,4000,2362,4980,3080,2150,217
минус 151,6040,2850,0880,0562,8330,3620,2520,255
минус 101,8310,3380,1070,06803,1990,4230,2950,297
минус 52,0810,3990,1280,0843,5960,4970,3430,345
02,3550,4660,1530,1020,0244,0250,5750,3960,399
плюс 52,5550,5430,1820,1230,0304,4880,6650,4560,458
плюс 102,9820,6290,2150,1460,0375,0000,7640,5220,524
плюс 153,3360,7250,2520,1740,0460,8740,5940,598
плюс 203,7210,8330,2940,2050,0581,0200,6880,613
плюс 254,1370,9510,3410,2400,0671,1320,6940,678
плюс 304,4601,0800,3940,2800,0811,2800,8560,864
плюс 354,8891,2260,4520,3240,0961,4440,9600,969
плюс 401,3820,5130,3740,1141,6231,0721,084
плюс 451,5520,5900,4290,1341,8171,1931,206
плюс 501,7400,6700,4900,1572,0281,3231,344
плюс 551,9430,7590,5570,1832,2571,4641,489
плюс 602,1620,8530,6310,2122,5051,5881,645

Таблица 6. Зависимость плотности от температуры: Пропан, Изобутан, н-Бутан

Температура, о СПропанИзобутанн-Бутан
Удельный объёмПлотностьУдельный объёмПлотностьУдельный объёмПлотность
Жидкость, л/кгПар, м 3 /кгЖидкость, кг/лПар, кг/м 3Жидкость, л/кгПар, м 3 /кгЖидкость, кг/лПар, кг/м 3Жидкость, л/кгПар, м 3 /кгЖидкость, кг/лПар, кг/м 3
минус 601,6500,9010,6061,11
минус 551,6720,7350,5981,36
минус 501,6860,5520,5931,810
минус 451,7040,4830,5872,07
минус 401,7210,3830,5812,610
минус 351,7390,3080,5753,250
минус 301,7700,2580,5653,8701,6160,6710,6191,490
минус 251,7890,2160,5594,6201,6390,6060,6101,650
минус 201,8080,18250,5535,4801,6500,5100,6061,960
минус 151,8250,1560,5486,4001,6670,4000,6002,5001,6260,6240,6151,602
минус 101,8450,1320,5427,5701,6840,3290,5943,0401,6350,5140,6121,947
минус 51,8690,1100,5359,0501,7010,2790,5883,5901,6530,4760,6052,100
01,8940,0970,52810,3401,7180,2320,5824,3101,6640,3550,6012,820
плюс 51,9190,0840,52111,9001,7420,1970,5745,0701,6780,2990,5963,350
плюс 101,9460,0740,51413,6001,7560,1690,56945,9201,6940,2540,59023,94
плюс 151,9720,0640,50715,511,7700,1440,5656,9501,7150,2150,5834,650
плюс 202,0040,0560,49917,7401,7940,1260,55737,9401,7270,1860,57095,390
плюс 252,0410,04960,49020,1501,8150,1090,55119,2101,7450,1620,57326,180
плюс 302,0700,04390,48322,8001,8360,0870,544811,501,7630,1390,56737,190
плюс 352,1100,03950,47425,301,8520,0770,54013,001,7790,1220,5628,170
плюс 402,1550,0350,46428,601,8730,0680,53414,7001,8010,1070,55529,334
плюс 452,2170,0290,45134,501,8980,0600,52716,8001,8210,09460,54910,571
плюс 502,2420,0270,44636,8001,92980,0530,518218,9401,8430,08260,542612,10
плюс 552,2880,02490,43740,2201,9490,0490,51320,5601,8660,08080,53612,380
плюс 602,3040,02240,43444,601,9800,0410,50524,2001,8800,06430,53215,400

Наиболее распространенным является использование СУГ в качестве топлива в двигателях внутреннего сгорания. Обычно для этого используется смесь пропан-бутан. В некоторых странах СУГ использовались с 1940 года как альтернативное топливо для двигателей с искровым зажиганием. СУГ являются третьим наиболее широко используемым моторным топливом в мире. В 2008 более 13 миллионов автомобилей по всему миру работали на пропане. Более 20 млн тонн СУГ используются ежегодно в качестве моторного топлива.

Использование СУГ в качестве топлива в промышленных и коммунально-бытовых нагревательных аппаратах позволяет осуществлять регулирование процесса горения в широком диапазоне, а возможность хранения СУГ в резервуарах делает его более предпочтительным по сравнению с природным газом в случае использования СУГ на автономных узлах теплоснабжения.

Таблица 7. Использование СУГ для производства продуктов для органического синтеза

Основное направление химической переработки СУГ — это термические и термокаталитические превращения. В первую очередь здесь подразумеваются процессы пиролиза и дегидрирования, приводящие к образованию ненасыщенных углеводородов — ацетилена, олефинов, диенов, которые широко применяются для производства высокомолекулярных соединений и кислородсодержащих продуктов. Это направление включает в себя также процесс производства сажи термическим разложением в газовой фазе, а также процесс производства ароматических углеводородов. Схема превращений углеводородных газов в конечные продукты представлена в таблице.

Продукты прямого превращения

Производное веществоКонечный продукт
первичноевторичное
ЭтиленПолиэтиленПолиэтиленовые пластмассы
Окись этиленаПоверхностно-активные вещества
ЭтиленгликольПолиэфирное волокно, антифриз и смолы
ЭтаноламиныПромышленные растворители, моющие вещества, мыло
ХлорвинилХлорполивинилПластиковые трубы, пленки
ЭтанолЭтиловый эфир, уксусная кислотаРастворители, химические преобразователи
АцетальдегидУксусный ангидридАцетатная целлюлоза, аспирин
Нормальный бутан
ВинилцетатПоливиниловый спиртПластификаторы
ПоливинилацетатПластиковые пленки
ЭтилбензолСтиролПолистироловые пластмассы
Акриловая кислотаВолокна, пластмассы
ПропиональдегидПропанолГербициды
Пропионовая кислотаКонсервирующие средства для зерна
ПропиленАкрилонитрилАдипонитрилВолокна (нейлон-66)
ПолипропиленПластичные пленки, волокна
Окись пропиленаПропиленкарбонатПолиуретановые пены
ПолипропиленгликольСпециальные растворители
Аллиловый спиртПолиэфирные смолы
ИзопропанолИзопропилацетатРастворители типографических красок
АцетонРастворитель
ИзопропилбензолФенолФенольные смолы
АкролеинАкрилатыЛатексные покрытия
АллилхлоридыГлицерольСмазочные вещества
Нормальные и изомолярные альдегидыНормальный бутанолРастворитель
ИзобутанолАмидные смолы
Изопропилбензол
Номальные бутеныПолибутеныСмолы
Вторичный бутиловый спиртМетилэтиловый кетонПромышленные растворители, покрытия, связывающие вещества
Депарафинизирующие добавки к нефти
ИзобутиленИзобутиленметиловый бутадиеновый сополимер
Бутиловая смолаПластмассовые трубы, герметики
Третичный бутиловый спиртРастворители, смолы
Метилбутиловый третичный эфирПовыситель октанового числа бензина
МетакролеинМетилметакрилатЧистые пластиковые листы
БутадиенСтирилбутадиеновые полимерыБуна-каучуковая синтетическая резина
АдипонитрилГексаметилендиаминНейлон
СульфоленСульфоланОчиститель промышленного газа
ХлоропренСинтетическая резина
БензолЭтилбензолСтиролПолистироловые пластмассы
ИзопропилбензолФенолФенольные смолы
НитробензолАнилинКрасители, резина, фотохимикаты
Линейный алкилбензолРазлагающиеся под действием бактерий моющие вещества
Малеиновый ангидридМодификаторы пластмасс
ЦиклогексанКапролактамНейлон-6
Адипиновая кислотаНейлон-66
ТолуолБензолЭтилбензол, стиролПолистироловые пластмассы
Изопропилбензол, фенолФенольные смолы
Нитробензол, хлорбензол, анилин, фенолКрасители, резина, фотохимикаты

Кроме перечисленного СУГ используют в качестве аэрозольного энергоносителя. Аэрозолем является смесь активного компонента (духов, воды, эмульгатора) с пропиленом. Это коллоидный раствор, в котором тонкодиспергированные (размером 10 — 15 мкм) жидкие или твердые вещества взвешены в газовой или жидкой, легкоиспаряющейся фазе сжиженного углеводородного газа. Дисперсная фаза — активный компонент, из-за которого и вводят пропеллент в аэрозольные системы, применяющиеся для распыления духов, туалетной воды, полирующих веществ и др.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *