вращение проводящей рамки в магнитном поле

Курс лекций по физике Трофимова Для студентов инженерно-технических специальностей

Вращение рамки в магнитном поле

Явление электромагнитной индукции применяется для преобразования механической энергии в энергию электрического тока. Для этой цели используются генераторы, принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле (рис. 180).

Предположим, что рамка вращается в однородном магнитном поле (B=const) равномерно с угловой скоростью w=const. Магнитный поток, сцепленный с рамкой площадью S, в любой момент времени t, согласно (120.1), равен

где a = w t — угол поворота рамки в момент времени t (начало отсчета выбрано так, чтобы при t=0 было a=0). Релятивистское изменение длин и интервалов времени Решение задач по физике

При вращении рамки в ней будет возникать переменная э.д.с. индукции (см. (123.2))

изменяющаяся со временем по гармоническому закону. При sin w t = l э.д.с. максимальна, т. е.

Учитывая (124.2), выражение (124.1) можно записать в виде

Таким образом, если в однородном магнитном поле равномерно вращается рамка, то в ней возникает переменная э.д.с., изменяющаяся по гармоническому закону.

Из формулы (124.2) вытекает, что (следовательно, и э.д.с. индукции) находится в прямой зависимости от величин w, B и S. В России принята стандартная частота тока n = w/(2p) = 50 Гц, поэтому возможно лишь увеличение двух остальных величии. Для увеличения В применяют мощные постоянные магниты или в электромагнитах пропускают значительный ток, а также внутрь электромагнита помещают сердечники из материалов с большой магнитной проницаемостью m. Если вращать не один, а ряд витков, соединенных последовательно, то тем самым увеличивается S. Переменное напряжение снимается с вращающегося витка с помощью щеток, схематически изображенных на рис. 180.

Процесс превращения механической энергии в электрическую обратим. Если по рамке, помещенной в магнитное доле, пропускать электрический ток, то в соответствии с (109.1) на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателей, предназначенных для превращения электрической энергии в механическую.

Вихревые токи (токи Фуко)

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми. Их также называют токами Фуко — по имени первого исследователя.

Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему вихревые токи. Например, если между полюсами невключенного электромагнита массивный медный маятник совершает практически незатухающие колебания (рис. 181), то при включении тока он испытывает сильное торможение и очень быстро останавливается. Это объясняется тем, что возникшие токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения (демпфирования) подвижных частей различных приборов. Если в описанном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует.

Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Поэтому для уменьшения потерь на нагревание якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускается ток высокой частоты. В металле возникают интенсивные вихревые токи, способные разогреть его до плавления. Такой способ позволяет плавить металлы в вакууме, в результате чего получаются сверхчистые материалы.

Вихревые токи возникают и в проводах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленца. На рис. 182, а показано направление вихревых токов при возрастании первичного тока в проводнике, а на рис. 182, б — при его убывании. В обоих случаях направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. Таким образом, вследствие возникновения вихревых токов быстропеременный ток оказывается распределенным по сечению провода неравномерно — он как бы вытесняется на поверхность проводника. Это явление получило название скин-эффекта (от англ. skin — кожа) или поверхностного эффекта. Так как токи высокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми.

Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного слоя. На этом основан метод поверхностной закалки металлов. Меняя частоту поля, он позволяет производить закалку на любой требуемой глубине.

Источник

Вращение рамки в магнитном поле

Явление электромагнитной индукции применяется для преобразования механической энергии в энергию электрического тока. Для этой цели используются генераторы, принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле (рис. 180).

Предположим, что рамка вращается в однородном магнитном поле (В = const) равномерно с угловой скоростью w = const. Магнитный поток, сцепленный с рамкой площадью S, в любой момент времени t, согласно (120.1), равен

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

где a = wt— угол поворота рамки в момент времени t (начало отсчета выбрано так, чтобы при t = 0 было a = 0).

При вращении рамки в ней будет возникать переменная э.д.с. индукции (см. (123.2))

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле(124.1)

изменяющаяся со временем по гармоническому закону. При sinwt = l э.д.с. x1, максимальна, т. е.

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле(124.2)

Учитывая (124.2), выражение (124.1) можно записать в виде

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

Таким образом, если в однородном магнитном поле равномерно вращается рамка, то в ней возникает переменная э.д.с., изменяющаяся по гармоническому закону.

Из формулы (124.2) вытекает, что xmax (следовательно, и э.д.с. индукции) находится в прямой зависимости от величин w, Ви S. В России принята стандартная частота тока v = w/(2p) = 50 Гц, поэтому возможно лишь увеличение двух остальных величин. Для увеличения Вприменяют мощные постоянные магниты или в электромагнитах пропускают значительный ток, а также внутрь электромагнита помещают сердечники из материалов с большой магнитной проницаемостью m. Если вращать не один, а ряд витков, соединенных последовательно, то тем самым увеличивается S. Переменное напряжение снимается с вращающегося витка с помощью щеток, схематически изображенных на рис. 180.

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

Процесс превращения механической энергии в электрическую обратим. Если по рамке, помещенной в магнитное поле, пропускать электрический ток, то в соответствии с (109.1) на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателем, предназначенных для превращения электрической энергии в механическую.

Вихревые токи (токи Фуко)

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми. Их также называют токами Фуко — по имени первого исследователя.

Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему вихревые токи. Например, если между полюсами невключенного электромагнита массивный медный маятник совершает практически незатухающие колебания (рис. 181), то при включении тока он испытывает сильное торможение и очень быстро останавливается. Это объясняется тем, что возникшие токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения (демпфирования) подвижных частей различных приборов. Если в описан ном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует.

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Поэтому для уменьшения потерь на нагревание якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускается ток высокой частоты. В металле возникают интенсивные вихревые токи, способные разогреть его до плавления. Такой способ позволяет плавить металлы в вакууме, в результате чего получаются сверхчистые материалы.

Вихревые токи возникают и в проводах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленца. На рис. 182, а показано направление вихревых токов при возрастании первичного тока в проводнике, а на рис. 182, б — при его убывании. В обоих случаях направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. Таким образом, вследствие возникновения вихревых токов быстропеременный ток оказывается распределенным по сечению провода неравномерно — он как бы вытесняется на поверхность проводника. Это явление получило название скин-эффекта (от англ, skin — кожа) или поверхностного эффекта. Так как токи высокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми.

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного слоя. На этом основан метод поверхностной закалки металлов. Меняя частоту поля, он позволяет производить закалку на любой требуемой глубине.

Источник

Вращение рамки в магнитном поле

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

Явление электромагнитной индукции применяется для преобразования механической энергии в энергию электрического тока. Для этой цели используются генераторы, принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле

изменяющаяся со временем по гармоническому закону. При sinωt=1, Ei максимальна, т.е. Emax=BSω определяет максимальные значения, достигаемые колеблющейся эдс.

Таким образом, если в однородном магнитном поле равномерно вращается рамка, то в ней возникает переменная э.д.с., изменяющаяся по гармоническому закону

Если вращать не один виток, а N витков, соединенных последовательно, то тем самым увеличивается S (S=NS1), т.е. в N раз увеличивается снимаемое напряжение.

Процесс превращения механической энергии в электрическую обратим. Если через рамку, помещенную в магнитное поле, пропускать электрический ток, то в соответствии с (1.2) на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателей, предназначенных для превращения электрической энергии в механическую.

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных впеременное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми. Их также называют токами Фуко – по имени первого их исследователя. Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Например, если между полюсами невключенного электромагнита массивный медный маятник совершает практически незатухающие колебания, то при включении тока он испытывает сильное торможение и очень быстро останавливается. Это объясняется тем, что возникшие токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения (демпфирования) подвижных частей различных приборов. Если в описанном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует.

Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Поэтому для уменьшения потерь на нагревание якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускается ток высокой частоты. В металле возникают интенсивные вихревые токи, способные разогреть его до плавления. Такой способ позволяет плавить металлы даже в вакууме, в результате чего получаются сверхчистые материалы.

Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного слоя. На этом основан метод поверхностной закалки металлов. Меняя частоту поля, он позволяет производить закалку на любой требуемой глубине.

Источник

39. Вращение проводящей рамки в магнитном поле. Баллистический способ измерения магнитной индукции.

Явление электромагнитной индукции часто используется для преобразования механической энергии в энергию электрического тока. Для этой цели применяются генераторы, принцип действия которых рассмотрим на примере плоской рамки, которая вращается в однородном магнитном поле.

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

Пусть рамка вращается в однородном магнитном поле (B=const) равномерно с угловой скоростью ω=const. Магнитный поток, который сцеплен с рамкой площадью S, в любой произвольный момент времени t будет равен вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

где α = ωt — угол поворота рамки в момент времени t (начало отсчета выбрано так, чтобы при t=0 было α=0). Во время вращения рамки в ней будет появляться переменная э.д.с. индукции вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле(1)

которая изменяется со временем по гармоническому закону. При sinαt = 1 э.д.с. ξi максимальна, т. е. вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле(2)

Учитывая (2), формула (1) запишется как вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

Значит, если рамка вращается равномерно в однородном магнитном поле, то в ней возникает переменная э.д.с., которая изменяется по гармоническому закону.

Из формулы (2) следует, что ξmax (следовательно, и э.д.с. индукции) находится в непосредственной зависимости от величин ω, B и S. В России принята стандартная частота тока ν = ω/(2π) = 50 Гц, поэтому на практике возможно лишь увеличение двух остальных величии. Для увеличения В применяют мощные постоянные магниты или пропускают значительный ток в электромагнитах, а также внутрь электромагнита помещают сердечники из материалов с большим значением магнитной проницаемостью μ. Если вращать не один, а большое количество витков, соединенных последовательно, то тем самым увеличивается S. Переменное напряжение снимается с вращающегося витка с помощью щеток, схематически изображенных на рис. 1.

Процесс превращения механической энергии в электрическую обратим. Если по рамке, которая помещена в магнитное поле, пропускать электрический ток, то в магнитном поле на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателей, имеющих предназначение превращать электрическую энергии в механическую.

Баллистический метод основан на измерении баллистическим гальванометром количества электричества, индуктируемого в измерительной катушке при быстром изменении сцепленного с ней магнитного потока (см. Баллистический метод электроизмерений). Кроме баллистических гальванометров, для измерения магнитного потока применяют веберметры (флюксметры) магнитоэлектрические и фотоэлектрические. Веберметрами можно измерять медленно меняющиеся потоки. Баллистическим методом определяют основную кривую индукции В (Н), кривую намагничивания J (H), петлю гистерезиса, различные виды проницаемости и размагничивающий фактор ферромагнитных образцов.

40. Явление самоиндукции. Эдс самоиндукции.

Самоиндукция — возникновение ЭДС индукции в замкнутом проводящем контуре [1] при изменении тока, протекающего по контуру.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле:

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле.

Коэффициент пропорциональности вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поленазывается коэффициентом самоиндукции или индуктивностью контура (катушки).

Источник

§ 124. Вращение рамки в магнитном поле

Явление электромагнитной индукции при­меняется для преобразования механиче­ской энергии в энергию электрического тока. Для этой цели используются генера­торы, принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле (рис. 180).

Предположим, что рамка вращается в однородном магнитном поле (В=const) равномерно с угловой скоростью =const. Магнитный поток, сцепленный с рамкой площадью S, в любой момент

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

где =t— угол поворота рамки в мо­мент времени t (начало отсчета выбрано так, чтобы при t=0 =0).

При вращении рамки в ней будет воз­никать переменная э.д.с. индукции (см. (123.2))

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

изменяющаяся со временем по гармониче­скому закону. При sint=l ξi макси­мальна, т. е.

определяет максимальные значения, до­стигаемые колеблющейся э.д.с. Учитывая (124.2), выражение (124.1) можно запи­сать в виде

Таким образом, если в однородном маг­нитном поле равномерно вращается рам­ка, то в ней возникает переменная э.д.с., изменяющаяся по гармоническому закону. Из формулы (124.2) вытекает, что ξmax (следовательно, и э.д.с. индукции) находится в прямой зависимости от вели­чин со, В и S. В СССР принята стандарт­ная частота тока v = (2)=50 Гц, поэто­му возможно лишь увеличение двух остальных величин. Для увеличения В применяют мощные постоянные магниты или в электромагнитах пропускают значи­тельный ток, а также внутрь электромаг­нита помещают сердечники из материалов с большой магнитной проницаемостью . Если вращать не один, а ряд витков, соединенных последовательно, то тем са-

мым увеличивается S. Переменное напря­жение снимается с вращающегося витка с помощью щеток, схематически изобра­женных на рис. 180.

Процесс превращения механической энергии в электрическую обратим. Если через рамку, помещенную в магнитное по­ле, пропускать электрический ток, то в со­ответствии с (109.1) на нее будет дей­ствовать вращающий момент и рамка на­чнет вращаться. На этом принципе основана работа электродвигателей, пред­назначенных для превращения электриче­ской энергии в механическую.

§ 125. Вихревые токи (токи Фуко)

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в пе­ременное магнитное поле. Эти токи оказы­ваются замкнутыми в толще проводника и поэтому называются вихревыми. Их так­же называют токами Фуко — по имени первого исследователя.

Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле на­правлено так, чтобы противодействовать изменению магнитного потока, индуциру­ющего вихревые токи. Например, если между полюсами невключенного электро­магнита массивный медный маятник со­вершает практически незатухающие коле­бания (рис. 181), то при включении тока он испытывает сильное торможение

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

и очень быстро останавливается. Это объясняется тем, что возникшие токи Фу­ко имеют такое направление, что действу­ющие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения (дем­пфирования) подвижных частей различ­ных приборов. Если в описанном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует.

Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. По­этому для уменьшения потерь на нагрева­ние якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отде­ленных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных ме­таллургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускает­ся ток высокой частоты. В металле воз­никают интенсивные вихревые токи, спо­собные разогреть его до плавления. Такой способ позволяет плавить металлы в ваку­уме, в результате чего получаются сверх­чистые материалы.

Вихревые токи возникают и в прово­дах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленца. На рис. 182, а показано направление вихревых токов при возраста­нии первичного тока в проводнике, а на

вращение проводящей рамки в магнитном поле. Смотреть фото вращение проводящей рамки в магнитном поле. Смотреть картинку вращение проводящей рамки в магнитном поле. Картинка про вращение проводящей рамки в магнитном поле. Фото вращение проводящей рамки в магнитном поле

рис. 182, б — при его убывании. В обоих случаях направление вихревых токов тако­во, что они противодействуют изменению первичного тока внутри проводника и спо­собствуют его изменению вблизи повер­хности. Таким образом, вследствие воз­никновения вихревых токов быстропеременный ток оказывается распределенным по сечению провода неравномерно — он как бы вытесняется на поверхность про­водника. Это явление получило название скин-эффекта (от англ. skin — кожа) или поверхностного эффекта. Так как токи вы­сокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми.

Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного слоя. На этом основан метод поверхностной закалки ме­таллов. Меняя частоту поля, он позволяет производить закалку на любой требуемой глубине.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *