Что такое осевое и орбитальное движение земли
§ 6. Движения Земли
Как движется Земля вокруг своей оси и вокруг Солнца.
Как движется Земля вокруг своей оси и вокруг Солнца
Земля, как и другие планеты, вращается вокруг своей оси. Земная ось наклонена под углом к плоскости орбиты, по которой наша планета обращается вокруг Солнца. Этот угол составляет 66,5°. Северным концом земная ось направлена на Полярную звезду. Земная ось — это воображаемая линия, которая проходит через центр земного шара. В точках, где ось пересекается с поверхностью Земли, располагаются Северный полюс и Южный полюс (рис. 13).
Вращающаяся Земля поворачивается к Солнцу разными сторонами. В том полушарии, которое обращено к Солнцу, — день, а в том, которое в тени, — ночь. Один оборот вокруг своей оси Земля совершает примерно за 24 ч. За этот отрезок времени (мы называем его сутками) на Земле день и ночь сменяют друг друга.
Северный и Южный полюсы — уникальные точки нашей планеты. Они не перемещаются при осевом вращении Земли. На Северном полюсе, куда ни посмотри, повсюду будет юг, а на Южном полюсе — север.
Движение Земли вокруг своей оси — осевое, вокруг Солнца — орбитальное.
Смена дня и ночи — следствие осевого движения Земли.
Одновременно Земля обращается вокруг Солнца (рис. 13). Земная орбита имеет форму овала (эллипса), причём Солнце немного смещено по отношению к его центру. Из-за этого Земля то приближается к Солнцу, то удаляется от него. Причём ближе всего к нашей звезде (примерно 147 млн км) Земля оказывается в начале января, вскоре после Нового года. Напротив, в середине нашего лета — в начале июля — Земля наиболее удалена от Солнца — до 152 млн км.
Земля совершает один виток по орбите примерно за 365 суток и 6 ч. За этот отрезок времени на нашей планете сменяются четыре времени года (см. рис. 13). Люди договорились считать год равным 365 дням.
Раз в четыре года, когда из оставшихся шести часов набираются дополнительные сутки, наступает високосный год. В високосном году 366 дней, а в феврале этого года 29 дней.
ЗЕМЛЯ ВРАЩАЕТСЯ ВОКРУГ СВОЕЙ ОСИ С ЗАПАДА НА ВОСТОК. ОДНОВРЕМЕННО ЗЕМЛЯ ОБРАЩАЕТСЯ ВОКРУГ СОЛНЦА ПО ОРБИТЕ В ТОМ ЖЕ НАПРАВЛЕНИИ.
Работаем с рисунком
В изучении географии и естественных наук незаменимы графические изображения (рисунки, чертежи, фото и т. д.). С помощью рисунка можно лучше и быстрее разобраться в тексте, проверить себя, получить дополнительные сведения, т. е. хорошо усвоить новый материал.
Естествознание.ру
Планета Земля
Земля невероятно красива и разнообразна. Она кажется нам настолько родной и привычной, что порой мы даже не осознаем ее уникальности. Наша планета — единственное астрономическое тело в обозримой Вселенной, где зародилась и существует жизнь. Ученые до сих пор пытаются найти ответ на вопрос, когда и почему это произошло именно на Земле.
История Земли не единственное, что увлекает людей уже много лет. С развитием человечества росло и желание исследовать неизвестные части мира. Оно породило волну открытий, благодаря которым состоялся грандиозный прорыв в познаниях о планете, были описаны новые материки, острова, океаны, произошел кардинальный переворот в привычных представлениях о мире. Казалось бы, сегодня на Земле не осталось места для географических открытий, но в мире по-прежнему обнаруживаются новые виды, уникальные природные образования, новые свидетельства прошлого.
Вместе с освоением планеты вскрылась и ее уязвимость. Появившись на Земле, человек стал переделывать все вокруг под себя. Возводил города, чтобы жить с комфортом, возделывал поля, чтобы не голодать, строил заводы, чтобы производить удобные вещи. Люди беспрерывно изменяют мир, чтобы сделать его богаче и безопаснее, а он, к сожалению, становится все опаснее и беднее. В наши дни Земля по-прежнему нуждается в изучении, только теперь первостепенно не открытие чего-то неизвестного, а поиск оптимальных отношений между Землей и человеком.
Форма и размеры Земли
Традиционно принято считать, что Земля имеет форму шара. Однако это не совсем так.
Первые исследователи считали, что Земля плоская и представляет собой диск, плавающий на поверхности воды. Их взгляды кардинально изменил Аристотель, который не просто предположил, что наша планета круглая, но и доказал это. Сегодня для простоты Землю также называют шаром. Однако не секрет, что из-за вращения вокруг своей оси и возникающей при этом центробежной силы наша планета не может иметь абсолютно шарообразную форму.
Параметры Земли
Соотношение размеров Солнца, Земли и других планет Солнечной системы
Земля — эллипсоид?
Первоначально предполагалось, что Земля имеет форму эллипсоида — она несимметрична и сплюснута у полюсов. Подтверждением этому служит тот факт, что экваториальный радиус на 21,4 км больше, чем расстояние от центра Земли до полюсов (полярный радиус). Кроме того, более точные измерения показали, что расстояние от экватора до Северного полюса меньше, чем до Южного.
Наглядная разница между шаром и эллипсоидом
А может, все-таки геоид?
Эллипсоид (как и шар) — идеальная форма, которую в действительности Земля не может иметь. Данная форма удобна для проведения математических расчетов, поэтому часто используется. Реальная же форма Земли далека от эталона. Она определяется неровностями рельефа материков и океанического дна, такими как впадины и возвышенности, и называется геоидом (что в переводе с греческого языка означает «землеподобный»).
Сравнение поверхностей. Геоид — форма Земли, полученная мысленным продолжением поверхности Мирового океана под континентами
Движение Земли
Сквозь бескрайние просторы Вселенной, среди бесчисленного множества звезд мчится планета, которую мы называем своим домом, — Земля. Нам она кажется необъятным миром, но это лишь иллюзия. В суматохе дней мы редко всматриваемся в небо и не осознаем, что в необозримой пустоте космоса наша планета не более чем песчинка, на которой возникло чудо жизни.
Земля — космическое тело, а мы — космонавты, совершающие длительный полет вокруг Солнца и бороздящие, не думая о том, просторы Вселенной. На протяжении веков люди пытались выяснить, что из себя представляет этот «космический корабль», пассажирами которого они стали. Какой он формы, с какой скоростью мчится? Благодаря человеческому любопытству, упорству исследователей, а затем и научно-техническому прогрессу сегодня почти на все вопросы о Земле у нас есть точные ответы.
Земля, как и другие планеты солнечной системы, находится в постоянном движении. Движение — это жизнь. Данное утверждение справедливо не только для человека, но и для нашей планеты. Каждую секунду мы перемещаемся в космическом пространстве со скоростью около 30 км/с, совершая не одно, а несколько типов движения.
Два основных типа движения Земли и их следствия: а) осевое вращение; б) орбитальное вращение.
Осевое вращение
Первое и наиболее ощутимое для нас — движение Земли вокруг своей оси. День сменяет ночь, а ночь сменяет день, обеспечивая бесконечное течение времени. Наверное, каждый человек хотя бы раз в жизни хотел, чтобы в сутках было больше чем 24 ч, ведь их не всегда хватает на запланированные дела. Оказывается, времени и того меньше! Полный оборот вокруг своей оси Земля совершает за 23 ч 56 мин 4,1 с.
Земля вращается вокруг своей оси с запада на восток
Движение Земли вокруг своей оси во многом напоминает запущенный волчок, ось которого при постепенном замедлении начинает описывать в пространстве конусы. Перемещаясь в космическом пространстве, подобные действия совершает и земная ось, что с течением времени неизбежно приводит к изменению координат светил на звездном небе. Полный цикл земной прецессии составляет около 25 800 лет.
Орбитальное вращение
Второй тип движения — вращение вокруг Солнца. Его наша планета совершает не по строго круговой орбите, а по слегка вытянутой в форме эллипса. Самая близкая к нашему светилу точка земного пути называется перигелием, а самая дальняя — афелием. В афелии мы находимся в июле, а в перигелии — в январе. Земля парит в пространстве не строго перпендикулярно своей орбите, а под наклоном, равным 23,5°. Наклон земной оси и орбитальное вращение обеспечивают неравномерный нагрев поверхности планеты в течение года, из-за чего происходит смена времен года.
Если рассматривать движения Земли в космических масштабах, то можно заметить, что в этих периодах нет круглых чисел, к которым мы привыкли. Например, звездный год — точное время оборота Земли вокруг Солнца — составляет 365 сут. и 6 ч. Лишние шесть часов мы отбрасываем в течение трех лет. Впоследствии они накапливаются и добавляются к каждому четвертому году, который называется високосным.
Схема движения Земли вокруг Солнца
Наша планета движется не только вокруг Солнца, но и вместе с ним. Ежесекундно Солнечная система преодолевает огромные световые расстояния вокруг общего центра Млечного Пути. Как это движение влияет на Землю, до конца не изучено. Полный галактический год составляет около 280 млн лет.
Движение Земли вокруг Солнца и вокруг своей оси
Движение Земли: Freepick
Движение Земли вокруг Солнца непрерывно. Благодаря этому постоянному вращению наблюдаем, как меняются на нашей планете времена года. Облетая вокруг небесного светила, Земля еще успевает совершать движение вокруг оси — так сменяются день и ночь. Почему не ощущаем этого движения и как все это происходит? Попробуем отыскать ответы.
Движение Земли вокруг Солнца
Ученые древности сформулировали идею геоцентричности мира. Считалось, что наша планета — недвижимый центр, а все небесные тела совершают вращение вокруг нее.
Первым мысль о том, что Земля вращается вокруг Солнца, высказал великий астроном Аристарх Самосский в III веке до н. э. Он предложил революционную на тот момент гелиоцентрическую систему мира.
Идею поддержали вавилонянин Селевк (II век до н. э.), Гераклид Понтийский, Сенека. Но все же эти ученые оставались в меньшинстве. Так, Аристотель и Птолемей активно доказывали обратное, а в их работах можно прочесть много аргументов в пользу того, что никакого движения Земли не происходит.
Вопросом продолжили заниматься средневековые авторы. Вновь гипотеза о вращении Земли была сформулирована великим индийским астрономом и математиком Ариабхатой (конец V — начало VI вв.).
Поворотным моментом в этой дискуссии стала публикация фундаментального труда «О вращениях небесных сфер», который написал и издал в 1543 году польский и немецкий астроном Николай Коперник. Ему удалось обосновать гипотезу вращения Земли и добиться того, чтобы гелиоцентрическая система мира была рассмотрена и принята человечеством.
Понадобилось еще много экспериментов для подтверждения выводов ученого. Много было скептиков и противников этой идеи.
Только когда Галилей вывел принцип относительности движения, споры начали утихать. Он установил, что равномерное движение Земли не сказывается на процессах, которые на ней протекают. Ученый объяснил, почему мы, жители планеты, ничего не ощущаем во время ее постоянного движения.
Земля в Космосе: Freepick
Для современного человека то, что Земля вращается вокруг Солнца, не сенсация. Исследователи установили такие подробности этого процесса:
Когда наша планета совершает это вращение, то ее угол наклона остается неизменным. По этой причине на определенном отрезке траектории Земля больше поворачивается к светилу нижней частью, в Южном полушарии наступает летний сезон.
В это же время на Северный полюс солнечные лучи попадают в гораздо меньшей степени — там наступает период зимних холодов. Есть и периоды, когда Солнце более-менее равномерно бросает лучи на оба полушария. Происходит это весной и осенью.
Итак, разобрались, с какой скоростью движется Земля вокруг Солнца, и в том, что такое орбита Земли. Но на этом особенности движения Земли не заканчиваются.
Движение Земли вокруг своей оси
Если между Северным и Южным полюсами нашей планеты провести воображаемую линию, то получится так называемая земная ось. Вокруг нее постоянно происходит вращение, о котором известно:
Последний факт мало известен, но вызывает интерес. Наглядно его можно продемонстрировать так:
Земля и Солнце в Космосе: Freepick
Этого вращательного движения люди не ощущают, так как оно осуществляется постоянно и равномерно. При этом еще и меняется. Ученые установили, что каждый год происходит замедление вращения в среднем на четыре миллисекунды.
Объясняют это явление притяжением Луны, которое оказывает воздействие на протекание приливов и отливов на планете. Когда они происходят, Луна старается притянуть к себе воду и двигает ее в направлении, которое противоположно ходу Земли.
Это своеобразное противодействие провоцирует возникновение незначительной силы трения на дне водоемов. По законам физики данный процесс приводит к небольшому замедлению скорости движения Земли.
Крайние точки в процессе вращения нашей планеты — это такие даты:
Почему же Земля не улетает в космические просторы и не падает на Солнце, если она постоянно находится в движении? Действительно, во время ее вращения происходит выработка центробежной силы, которая направлена на то, чтобы отбросить планету от Солнца.
Но это не происходит, потому что движение Земли всегда имеет одинаковую скорость, а безопасное расстояние до светила соотносится с центробежной силой.
Если бы Солнце не притягивало Землю, она бы отправилась «путешествовать» по Галактике. Наша планета упала бы на свою звезду, если бы скорость вращения на орбите была медленнее. Благодаря идеальному природному балансу всех этих сил и скоростей ни того, ни другого не происходит.
Движение Земли вокруг Солнца подчиняется целому ряду законов, которые человечество разгадывало в течение веков. Люди долго пытались найти иные объяснения смене дня и ночи и времен года. Но теперь точно установлено, что наша планета вращается, а мы движемся вместе с ней.
Уникальная подборка новостей от нашего шеф-редактора
География
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Земля – часть Солнечной системы
В ясную ночь очень интересно наблюдать за небом: сверкает луна и тысячи сияющих звезд раскиданы по нему. Возникает ощущение, что оно безгранично. Та часть, которую мы видим, очень мала. В действительности весь существующий мир бесконечен в пространстве. Свое название он получил от греков – космос или Вселенная.
Земля считается планетой и расположена в пределах Солнечной системы. Составными ее частями считаются: Солнце, девять больших планет, астероиды, кометы, метеорные тела. Остановимся подробнее на строении Солнечной системы.
На рисунке хорошо видны размеры планет. В Солнечной системе есть планеты намного больше, чем Земля.
У многих планет есть спутники. Например, у Юпитера двенадцать, у Сатурна девять, а у Земли спутником считается Луна.
Из всех планет Солнечной системы особенной считается Земля. Отличием является наличие живых организмов. Какая по форме планета Земля интересовало людей издавна. Шарообразность Земли была доказана Фернандо Магелланом. Однако, людей интересовала не только форма, но и размеры планеты. Ученый Эратосфен определил радиус планеты Земля очень точно. Его расчеты были близки к современным, определенным современной техникой. А вот по массе Земля занимает 5 место среди планет.
В Солнечной системе насчитывается малых планет около 1600.
Часто встречаются на небосводе кометы – тела с длинным хвостом. Ядро ее представлено глыбой затвердевших газов, а хвост состоит из потока газов и пылинок. С появлением кометы связывают некоторые суеверия. Например, люди предполагали, что появление кометы предвещает несчастье – болезни, голод, войну. Опасались также, что комета может столкнуться с нашей планетой и все погибнут. Однако за прошедшие столетия ничего не произошло, поэтому это лишь вымысел людей.
Метеориты представляют собой обломки комет и астероидов, упавшие на поверхность планеты. Они содержат железо, медь, фосфор и другие вещества. Падают метеориты на Землю из межпланетного пространства в Солнечной системе. Попадая в атмосферу, они могут распадаться на множество мелких обломков, образуя метеоритные дожди.
К небесным телам дальнего космоса относятся звезды, имеющие форму шара и состоящие из газов. Они могут различаться по размерам, по степени раскаленности, а также по удаленности от нашей планеты. Самая близкая к нам звезда – Солнце, обладающая средней величиной.
Звезды в небе располагаются в виде созвездий. Названия им давали в зависимости от формы. Например, созвездие Большая Медведица можно принять за ковш, однако соединив все звезды между собой, получим фигуру медведицы.
Осевое движение Земли
В 17 веке благодаря открытиям Галилея узнали, что не небесные тела движутся вокруг нас, а Земля вращается вокруг своей оси.
Осью обычно считают стержень, располагающийся в центре тела. Около него совершается перемещение. Мы можем ее встретить у разных предметов, например колесо велосипеда или коляски. Ось Земли считается не настоящей, а воображаемой линией и она немного наклонена.
Эта воображаемая линия или ось вращения Земли выходит с двух сторон планеты, эти места принято называть полюсами. С одной стороны расположен Северный, с другой – Южный полис. На равнозначном расстоянии от полюсов проведена окружность – экватор. Эта линия делит планету на два полушария: северное и южное.
Земля обращается вокруг своей оси незаметно для нас. Осевое движение Земли совершается плавно, а вместе с ней вращаемся и мы.
Когда-то люди предполагали, что движение небесных тел протекает с востока на запад.
Однако направлением осевого движения Земли считается перемещение с запада на восток. Получается, что при вращении Земли вокруг своей оси освещается то одна ее часть, то другая. На хорошо освещенной части планеты день, а там, где недостаток света, наступает ночь. Таким образом, следствием осевого движения Земли является смена дня и ночи. Такое движение Земли называется осевым или суточным.
Земля делает полный оборот вокруг своей оси за 24 часа или за сутки. Скорость движения Земли вокруг оси может различаться в разных местах. Например, на экваторе она достигает приблизительно 1600 км/час.
При движении любого тела начинает действовать центробежная сила, которая растягивает планету в области экватора и сплющивает с полюсов. Поэтому форма Земли не круглая, а сплюснутая, что является следствием движения Земли.
Обращение Земли вокруг Солнца
Помимо осевого существует и орбитальное движение Земли. Путь, который проходит Земля при обращении вокруг Солнца, называют орбитой.
Период обращения Земли вокруг Солнца составляет 1 год. Солнечный год равен 365 суток 5 часов 48 минут 46 секунд. Поэтому принято считать 3 года по 365 суток, а 4-й – 366. Этот год получил название високосный.
Скорость обращения Земли составляет 30 км/сек.
Обращение Земли вокруг Солнца Источник
Наклон земной оси играет немаловажную роль при смене сезонов года. От скорости обращения земли вокруг Солнца зависит протяженность времен года.
Многие ребята хотели бы, чтобы постоянно было лето. Однако такого не бывает. За жарким летом идет прохладная осень, которая сменяется морозной зимой. На место ледяной зимы вступает теплая весна и лето. Однако период обращения Земли по своей орбите вокруг Солнца равен году и замена сезонов происходит систематично.
Следствием обращения Земли вокруг Солнца считается неравномерное получение тепла в разных полушариях.
На рисунке видно как происходит освещение планеты. Россия находится в северном полушарии. Если планета поворачивается этой стороной к Солнцу, то тепла здесь будет больше и наступит лето. Земля делает свое обращение вокруг Солнца за определенный период и поворачивается в другую сторону. Тогда в наше полушарие приходит зима.
От наклона оси зависит неравенство дня и ночи. Часто встречаются такие понятия как солнцестояние и равноденствие.
Предположите, что Земля прекратила свое обращение вокруг Солнца или вокруг своей оси. Планета стала бы располагаться одной стороной к источнику света. Температура бы здесь стала достигать более 100 0 и произошло бы испарение всей воды. Другая сторона, до которой не доходит излучение, пошла по пути оледенения.
Из всего сказанного становится понятно, что все виды движения Земли играют большую роль для жизни на планете.
Влияние космоса на Землю и жизнь людей
Люди во все времена пытались постичь загадки космоса и изучить его влияние на земную жизнь. Однако, даже с появлением современной техники влияние космоса на планету Земля изучено недостаточно. Самая ближайшая часть космоса – это Солнечная система. Именно о ее воздействии известно более всего.
Это воздействие космоса на планету Земля человек научился использовать в своей жизни. Приливы и отливы дают людям бесплатную энергию, которая вырабатывается на экологически чистых предприятиях – приливных гидроэлектростанциях.
Приливная электростанция во Франции
Во все края исходит излучение от небесного светила. При остывании Солнца наш мир окунется в темноту. Не будет тепла, и живые организмы погибнут от холода. Наступила бы еще одна эпоха оледенения.
Существует и другая сторона влияния Солнца из космоса на Землю. Ее излучение содержит в себе большое количество ультрафиолета. Наша планета защищена озоновым экраном, через который проникает лишь небольшая доля ультрафиолетового излучения.
При всем при этом, если в этом экране будут дыры, то живые организмы получат ожоги различной тяжести. Человек оказывает большое влияние на космос, и постепенно озоновый экран истончается. Этому способствует загрязнение нашего места обитания. Поэтому необходимо решать экологические проблемы на нашей планете для сохранения жизни.
Во многом на организм человека оказывают влияние магнитные бури, зарождающиеся в космосе.
На них обычно реагируют люди с заболеваниями сердечно-сосудистой и нервной систем. У них при этом могут появляться головные боли, повышается или понижается артериальное давление, наступает быстрая утомляемость, могут быть обмороки.
Влияние дальнего космоса на жизнь людей и планеты Земля не изучено достаточно хорошо. Человечество издавна изучает Вселенную и ее интересует вопрос: а есть ли жизнь на других планетах? Пока есть только предположения ученых, что на каждый миллион звезд приходится одна обитаемая планета. Возможно в ближайшем будущем эти тайны и загадки Вселенной будут разгаданы.
Осевое и орбитальное вращение Земли
Доказательства осевого вращения Земли, его значение для географической оболочки. Особенности солнечных и звездных суток. Направление движения и скорость орбитального вращения. Изменение освещения и нагревания северного и южного полушарий по сезонам года.
Глава 1. Суточное вращение и его значение для географической оболочки
1.1 Доказательства осевого вращения
1.2 Направление движения и скорости вращения
1.3 Солнечные и звёздные сутки
Глава 2. Орбитальное движение земли
2.1 Доказательства орбитального вращения Земли
2.2 Направление движения и скорость
2.3 Изменение освещения и нагревания северного и южного полушарий по сезонам года
2.4 Высота полуденного Солнца над горизонтом
2.5 Пояса освещения
Глава 3. Географические следствия осевого и орбитального вращения земли
Список используемых источников
Объяснение суточного вращения небосвода вращением Земли вокруг оси впервые было предложено представителями пифагорейской школы, сиракузянами Гикетом и Экфантом. Согласно некоторым реконструкциям, вращение Земли утверждал также пифагореец Филолай из Кротона (V век до н. э.). Высказывание, которое можно трактовать как указание на вращение Земли, содержится в Платоновском диалоге Тимей.
Однако о Гикете и Экфанте практически ничего неизвестно, и даже само их существование иногда подвергается сомнению. Согласно мнению большинства ученых, Земля в системе мира Филолая совершала не вращательное, а поступательное движение вокруг Центрального огня. В других своих произведениях Платон следует традиционному мнению о неподвижности Земли. Однако до нас дошли многочисленные свидетельства, что идею вращения Земли отстаивал философ Гераклид Понтийский (IV век до н. э.). Вероятно, с гипотезой о вращении Земли вокруг оси связано еще одно предположение Гераклида: каждая звезда представляет собой мир, включающий землю, воздух, эфир, причем всё это располагается в бесконечном пространстве. Действительно, если суточное вращение неба является отражением вращения Земли, то исчезает предпосылка считать звезды находящимися на одной сфере.
Примерно столетие спустя предположение о вращении Земли стало составной частью первой гелиоцентрической системы мира, предложенной великим астрономом Аристархом Самосским (III век до н. э.). Аристарха поддержал вавилонянин Селевк (II век до н. э.), также, как и Гераклид Понтийский считавший Вселенную бесконечной. О том, что идея суточного вращения Земли имела своих сторонников еще в I веке н. э., свидетельствуют некоторые высказывания философов Сенеки, Деркиллида, астронома Клавдия Птолемея. Подавляющее большинство астрономов и философов, однако, не сомневалось в неподвижности Земли.
Аргументы против идеи движения Земли имеются в произведениях Аристотеля и Птолемея. Так, в своем трактате «О Небе» Аристотель обосновывает неподвижность Земли тем, что на вращающейся Земле брошенные вертикально вверх тела не могли бы упасть в ту точку, из которой началось их движение: поверхность Земли сдвигалась бы под брошенным телом. Другой довод в пользу неподвижности Земли, приводимый Аристотелем, основан на его физической теории: Земля является тяжелым телом, а для тяжелых тел свойственно движение к центру мира, а не вращение вокруг него.
Одним из доводов Птолемея в пользу неподвижности Земли является вертикальность траекторий падающих тел, как и у Аристотеля. Далее, он отмечает, что при вращении Земли должны наблюдаться явления, которые на самом деле не происходят: все не закрепленные на ней Земле предметы должны совершать одно и то же движение, по направлению противоположное земному. Таким образом, мы никогда не могли бы видеть какое-нибудь идущее к востоку облако или брошенное в том же направлении тело, так как Земля в своем движении к востоку опережала бы все тела. Они казались бы нам движущимися к западу и отстающими от движения Земли.
Целью моих исследований было: доказать, что Земля движется вокруг своей оси и вокруг орбиты; что происходит вследствие ее вращения. [3]
Тема вращения Земли актуальна остается и сейчас, т.к. от этого зависят все процессы, происходящие на Земле: смена дня и ночи, смена времен года, распределение солнечной энергии и т.д.
Глава 1. Суточное вращение и его значение для географической оболочки
1.1 Доказательства осевого вращения
Рис: 1 Наклон земной оси по отношению к плоскости эклиптики (плоскости орбиты Земли).
Суточное вращение Земли происходит вокруг своей оси с периодом в одни звездные сутки, непосредственно наблюдаемым проявлением чего является суточное вращение небесной сферы. Вращение Земли происходит с запада на восток. При наблюдении с Полярной звезды или северного полюса эклиптики, вращение Земли происходит против часовой стрелки.
Рис: 2 Центробежная сила на вращающейся Земле.
В неинерциальных системах отсчёта второй закон Ньютона записывается следующим образом:
В равномерно вращающихся системах отсчета действуют две силы инерции: центробежная сила Fpr (рис. 2)и сила Кориолиса Fcor (рис 3). Следовательно, утверждения «Земля вращается вокруг своей оси» и «В системе отсчета, связанной с Землёй, действуют центробежная сила и сила Кориолиса» являются эквивалентными высказываниями, выраженными разными способами. Поэтому экспериментальные доказательства вращения Земли сводятся к доказательству существования в связанной с ней системе отсчета этих двух сил инерции.
Рис3: Направление силы Кориолиса на вращающейся Земле.
Центробежная сила, действующая на тело массы m, по модулю равна
Зависимость ускорения свободного падения от географической широты: Эксперименты показывают, что ускорение свободного падения зависит от географической широты: чем ближе к полюсу, тем оно больше. Это объясняется действием центробежной силы. Во-первых, точки земной поверхности, расположенные на более высоких широтах, ближе к оси вращения и, следовательно, при приближении к полюсу расстояние r от оси вращения уменьшается, доходя до нуля на полюсе. Во-вторых, с увеличением широты угол между вектором центробежной силы и плоскостью горизонта уменьшается, что приводит к уменьшению вертикальной компоненты центробежной силы.
Это явление было открыто в 1672 году, когда французский астроном Жан Рише, находясь в экспедиции в Африке, обнаружил, что у экватора маятниковые часы идут медленнее, чем в Париже. Ньютон вскоре объяснил это тем, что период колебаний маятника обратно пропорционален квадратному корню из ускорения свободного падения, которое уменьшается на экваторе из-за действия центробежной силы.[5]
Эффекты силы Кориолиса: лабораторные эксперименты
Маятник Фуко (рис 4). Эксперимент, наглядно демонстрирующий вращение Земли, поставил в 1851 году французский физик Леон Фуко. Его смысл заключается в том, что плоскость колебаний математического маятника неизменна относительно инерциальной системы отсчета, в данном случае относительно неподвижных звезд. Таким образом, в системе отсчета, связанной с Землей, плоскость колебаний маятника должна поворачиваться. С точки зрения неинерциальной системы отсчета, связанной с Землёй, плоскость колебаний маятника Фуко поворачивается под действием силы Кориолиса.
Рис 4: Маятник Фуко
Наиболее отчетливо этот эффект должен быть выражен на полюсах, где период полного поворота плоскости маятника равен периоду вращения Земли вокруг оси (звёздным суткам). В общем случае, период обратно пропорционален синусу географической широты, на экваторе плоскость колебаний маятника неизменна.
Существует ряд других опытов с маятниками, используемых для доказательства вращения Земли. Например, в опыте Браве (1851 г.) использовался конический маятник. Вращение Земли доказывалось тем, что периоды колебаний по и против часовой стрелки различались, поскольку сила Кориолиса в этих двух случаях имела разный знак. В 1853 г. Гаусс предложил использовать не математический маятник, как у Фуко, а физический, что позволило бы уменьшить размеры экспериментальной установки и увеличить точность эксперимента. Эту идею реализовал Камерлинг-Оннес в 1879 г.
Опыты, использующие закон сохранения момент импульса: Некоторые эксперименты основаны на законе сохранения момента импульса: в инерциальной системе отсчёта величина момента импульса (равная произведению момента инерции на угловую скорость вращения) под действием внутренних сил не меняется. Если в некоторый начальный момент времени установка неподвижна относительно Земли, то скорость её вращения относительно инерциальной системы отсчета равна угловой скорости вращения Земли. Если изменить момент инерции системы, то должна измениться угловая скорость её вращения, то есть начнётся вращение относительно Земли. В неинерциальной системе отсчёта, связанной с Землёй, вращение возникает в результате действия силы Кориолиса. Эта идея была предложена французским учёным Луи Пуансо в 1851 г.
Первый такой эксперимент был поставлен Хагеном в 1910 г.: два груза на гладкой перекладине были установлены неподвижно относительно поверхности Земли. Затем расстояние между грузами было уменьшено. В результате установка пришла во вращение. Ещё более наглядный опыт поставил немецкий учёный Ханс Букка (Hans Bucka) в 1949 г. Стержень длиной примерно 1,5 метра был установлен перпендикулярно прямоугольной рамке. Первоначально стержень был горизонтален, установка была неподвижной относительно Земли. Затем стержень был приведен в вертикальное положение, что привело к изменения момента инерции установке примерно в 10 4 раз и её быстрому вращению с угловой скоростью, в 10 4 раз превышающей скорость вращения Земли.
В основе ряда опытов, демонстрирующих вращение Земли, используется эффект Саньяка: если кольцевой интерферометр совершает вращательное движение, то вследствие релятивистских эффектов полосы смещаются на угол
1.2 Направление движения и скорости вращения
Вращение Земли происходит с запада на восток. При наблюдении с Полярной звезды или северного полюса эклиптики, вращение Земли происходит против часовой стрелки.
В соответствии со вторым законом Кеплера, орбитальная скорость обратно пропорциональна радиус-вектору. Поэтому скорость движения Земли по орбите также не постоянна, а изменяется от 29,5 км/с в афелии (июль) до 30,3 км/с в перигелии (январь). Соответственно, и расстояние от осеннего до весеннего равноденствия на орбите Земля проходит быстрее, чем противоположную, летнюю часть, а весна и лето в Северном полушарии на 6 суток продолжительнее осени и зимы.
Угловая скорость вращения Земли: Поскольку Земля относительно далёких звёзд, принимаемых за инерциальную систему отсчёта, делает полный оборот за звёздные, а не за солнечные сутки, то при вычислении угловой скорости вращения Земли следует брать именно эту величину:
Знать угловую скорость вращения Земли бывает необходимо при расчёте сил инерции (центробежной, Кориолиса), что требуется при решении задач гидрологии, метеорологии, баллистики, а также космонавтики. Приняв период вращения земли за 86400 секунд, мы сделали бы ошибку в 0,3%, что могло бы стать решающим при ведении артиллерийской стрельбы.[1]
1.3 Солнечные и звёздные сутки
Рис.5. Объяснение причин изменения длительности истинных солнечных суток
Необходимо отметить, что истинные солнечные сутки периодически меняют свою продолжительность. Это вызывается двумя причинами: во-первых, наклоном плоскости эклиптики к плоскости небесного экватора, во-вторых, эллиптической формой орбиты Земли. Когда Земля находится на участке эллипса, расположенном ближе к Солнцу (на рис.5 это положение показано слева), то она движется быстрее. Через полгода Земля окажется в противоположной части эллипса и будет перемещаться по орбите медленнее. Неравномерное движение Земли по своей орбите вызывает неравномерное видимое перемещение по небесной сфере Солнца, т. е. в разное время года Солнце перемещается с различной скоростью. Поэтому продолжительность истинных солнечных суток постоянно меняется.
В результате к продолжительности истинных солнечных суток добавляется синусоидальный член с амплитудой 9,8 мин. и периодом в полгода. Есть и другие периодические эффекты, вносящие вклад в длину истинных солнечных суток и зависящие от времени, но они невелики (возмущения от Луны и планет и т. д.).
Вследствие неравномерности истинных солнечных суток пользоваться ими в качестве единицы для измерения времени неудобно. По этой причине в повседневной жизни используются не истинные, а средние солнечные сутки, продолжительность которых принята постоянной.
Разность между средним солнечным временем и истинным солнечным временем в один и тот же момент называется уравнением времени. Оно обозначается греческой буквой n. Тогда можно записать следующее равенство:
Рис.6: График уравнения времени
Звёздные сутки делятся на звёздные часы, минуты и секунды. Звёздные сутки на 3 мин 56 с. короче средних солнечных суток, звёздный час короче общепринятого на 9.86 с. Как единица времени употребляются в редких случаях при организации астрономических наблюдений.
Часовой угол точки весеннего равноденствия равен нулю в момент её верхней кульминации. Полный оборот точки весеннего равноденствия, как и любой другой точки небесной сферы (так называемые звёздные сутки, или «24 часа звёздного времени») происходит за 23 час 56 мин 04 сек. среднего солнечного времени. В году содержится звёздных суток ровно на одни больше, чем средних солнечных. Продолжительность звёздных суток слегка меняется вследствие нутации и движения полюсов (т.е. покачивания Земли относительно её оси вращения), а также из-за неравномерности вращения Земли вокруг оси. Эти изменения составляют менее 0.001 с.[1]
Глава 2. Орбитальное движение земли
2.1 Доказательства орбитального вращения Земли
Следовательно, наличие годичных параллаксов у звезд является доказательством движения Земли вокруг Солнца.
Первые определения годичных параллаксов звезд были сделаны в 1835-1840 гг. Струве, Бесселем и Гендерсоном. Хотя эти определения были не очень точными, однако они не только дали объективное доказательство движения Земли вокруг Солнца, но и внесли ясное представление об огромных расстояниях, на которых находятся небесные тела во Вселенной.
Вторым доказательством движения Земли вокруг Солнца является годичное аберрационное смещение звезд, открытое еще в 1728 г. английским астрономом Брадлеем при попытке определить годичный параллакс звезды у Дракона.
Аберрацией вообще называется явление, состоящее в том, что движущийся наблюдатель видит светило не в том направлении, в котором он видел бы его в тот же момент, если бы находился в покое. Аберрацией называется также и сам угол между наблюдаемым (видимым) и истинным направлениями на светило. Различие этих направлений есть следствие сочетания скорости света и скорости наблюдателя.
Луч света от звезды М встречает объектив инструмента в точке О и, распространяясь со скоростью с, за время t пройдет расстояние ОK = сt и попадет в точку K. Но изображение звезды на крест нитей не попадет, так как за это же время t наблюдатель и крест нитей переместятся на величину KK1 = vt и окажутся в точке K1. Для того чтобы изображение звезды попало на крест нитей окуляра, надо инструмент установить не по истинному направлению на звезду КМ, а по направлению К0О и так, чтобы крест нитей находился в точке К0 отрезка К0К = К1К = vt. Следовательно, видимое направление на звезду К0М’ должно составить с истинным направлением КМ угол s, который и называется аберрационным смещением светила.
Из треугольника КО К0 следует:
или, по малости угла а,
Так как скорость годичного движения наблюдателя есть скорость движения Земли по орбите v = 29,78 км/сек, то, принимая с = 299 792 км/сек, согласно формуле (4.1), будем иметь s = 20”,496 sin q » 20”,50 sin q.
Число k0 = 20”,496 » 20″,50 называется постоянной аберрации.
Таким образом, самый факт существования годичного аберрационного смещения у звезд является доказательством движения Земли вокруг Солнца.
Различие между параллактическим и аберрационным смещением заключается в том, что первое зависит от расстояния до звезды, второе только от скорости движения Земли по орбите. Большие полуоси параллактических эллипсов различны для звезд, находящихся на разных расстояниях от Солнца, и не превосходят 0″,76, тогда как большие полуоси аберрационных эллипсов для всех звезд, независимо от расстояния, одинаковы и равны 20”,50.
Кроме того, параллактическое смещение звезды происходит в сторону видимого положения Солнца, аберрационное же смещение направлено не к Солнцу, а к точке, лежащей на эклиптике, на 90° западнее Солнца.[6]
2.2 Направление движения и скорость
Земля движется вокруг Солнца не по круговой, а по эллиптической орбите с эксцентриситетом (т.е. смещением фокуса относительно центра орбиты) е = 0,017. Например, Земля проходила точку перигелия, ближайшую к Солнцу, в 1998 году 04 января в 21 часов 15 минут 1 секунду всемирного времени UT. При этом ее расстояние от Солнца составляло 147099552 км. Противоположную точку орбиты, афелий, Земля проходила 3 июля 1998 года в 23 часа 50 минут 11 секунд всемирного времени UT. При этом Земля была от Солнца на расстоянии 152095605 км, т.е. на 5 миллионов километров больше. Это изменение расстояния до Солнца также хорошо заметно по изменению его видимого углового размера, который от 32°34″ в январе уменьшается до 31°30″ в июле. Поток энергии от Солнца, падающий на Землю, изменяется обратно пропорционально квадрату расстояния. Поэтому зимы в северном полушарии менее суровые, чем в южном, а лето в северном полушарии более прохладное. [6]
Если известное соотношение между длиной волны и периодом ее колебания распространяется на все иерархии объектов, то, используя его, можно определить период колебания волны, образуемой в результате очередного мгновенного прыжка Земли в плотном материале околосолнечного пространства. Предположив, что время прохождения колебания волны в плотном материале пространства по продолжительности совпадает со временем подготовки Земли к очередному мгновенному прыжку, можно определить интервал времени, по истечении которого Земля переместится на расстояние, равное толщине одного слоя пространства. Эта теоретическая величина смещения Земли. Зная реальную скорость движения Земли вокруг Солнца, можно определить расстояние, на которое фактически перемещается Земля во время подготовки к очередному прыжку. Определив разницу между теоретическим и фактическим перемещением Земли, проще понять причину несовпадения теоретического и фактического смещения ее. Здесь не так важна точность величины полученной разности, как факт ее обнаружения. Поэтому не будем предъявлять повышенных требований к точности производимых расчетов, тем более, что для них не существует точных исходных данных. В частности, неизвестен радиус персонального пространства Земли, по величине которого можно определить период радиоволны, рождаемой в материале пространства после мгновенного прыжка. Кроме того, в состав околоземного пространства входит не только персональное пространство ядра Земли, в теле которого сосредоточено основное количество вещества планеты. В него так же входят персональные пространства объектов всех последующих иерархий, ядра которых расположены в недрах Земли. А это не может не отразиться на точности проводимых расчетов. Они ориентировочны и могут быть использованы только для большей наглядности рассматриваемых процессов.
Радиус персонального пространства Земли определим из предположения того, что в его объем помещается персональное пространство Луны, радиус которого, как минимум, равен удалению ее от поверхности планеты. В таком случае, радиус персонального пространства Земли и длина ее радиоволны будут ориентировочно равны 0,75 млн. км. Следовательно, время подготовки Земли к очередному прыжку и период ее радиоволны будут ориентировочно равны 2,5 секундам. А это значит, что Земля при ее орбитальном движении вокруг Солнца через каждые 2,5 секунды должна перемещаться на ничтожно малое расстояние, равное толщине одного слоя пространства.
Фактически за 2,5секунды Земля перемещается на 150 км. Чем объяснить эту разницу? Если исходить из того, что мировое пространство представляет собой физический вакуум и движение объектов в нем непрерывно, то ничего объяснять не надо. Но если мировое пространство представляет собой предельно прочный материал, и перемещаться в нем можно только прерывисто, то обнаруженную разницу между теоретической и фактической величиной смещения Земли необходимо объяснить обстоятельно. Какими потенциальными возможностями должен обладать объект любой иерархии, в том числе и Земля, которыми он может воспользоваться при скачкообразном движении в плотном материале пространства? [3]
В процессе прерывистого движения Земли происходит мгновенный перенос одного слоя околосолнечного пространства с одной стороны персонального пространства планеты на другую сторону. Такой способ движения позволяет Земле перемещаться в околосолнечном пространстве, поочередно «перелистывая» с одной своей стороны на другую, будто книжные страницы, по одному слою персонального пространства Солнца. Но почему при существующем способе перемещения Земля не удаляется от Солнца? Почему большая часть движения Земли оказывается формальным движением, т.е. орбитальным движением, которое не приводит к существенным изменениям расстояния между Землей и Солнцем?
Расчленим суммарное движение Земли на отдельные движения объектов всех иерархий, содержащихся в теле планеты. Наименьшей иерархией является химический элемент. Он имеет наименьшее время подготовки к очередному мгновенному прыжку. Во всех последующих иерархиях объектов это время увеличивается на постоянную величину и синхронизируется друг с другом. Максимальное время подготовки к прыжку имеет ядро Земли, величина которого, по нашим ориентировочным оценкам, равна 2,5 секунды.
Следует отметить, что в момент завершения подготовки объекта любой иерархии к очередному прыжку его ядро должно находиться в центре симметрии своего персонального пространства и быть жестко соединено с ним. В период же подготовки объекта к прыжку ядро не связано со своим персональным пространством и при необходимости может беспрепятственно перемещаться в его плотном материале. Жесткая фиксация вещества тела с материалом персонального пространства и его автоматическая центровка в нем необходима только в момент мгновенного прыжка объекта. Это общее правило.
Учитывая полную «невесомость» материала пространства, а, следовательно, и его неспособность сопротивляться внешнему динамическому удару, после каждого удара каждого химического элемента персональные пространства всех иерархий объектов в теле Земли смещаются на один слой пространства. В результате такого перемещения персональных пространств объектов всех иерархий Земли, их ядра, сохраняя свою неподвижность, отстают от центра симметрии своих персональных пространств на величину их перемещения.
Таким образом, еще до мгновенного прыжка на протяжении 2,5 секунд тело Земли со своим персональным пространством перемещается за счет мгновенных прыжков химических элементов. Расстояние, на которое переместится Земля за это время, равно количеству химических элементов в ее теле, умноженному на количество прыжков, совершенных каждым химическим элементом за 2,5 секунды, и на толщину одного слоя пространства. За это время на такое же расстояние ядро планеты, оставаясь неподвижным, отстанет от тела планеты. Фактически ядро сместится в недрах Земли на такое же расстояние в противоположном направлении ее движения.
Свой вклад в движение Земли оказывают не только химические элементы, но и остальные иерархии объектов в ее теле. В итоге за 2,5 секунды объекты всех иерархий переместят Землю на 75 км. еще до ее мгновенного прыжка. За это время на такое же расстояние, но в противоположную сторону, сместится ядро Земли в ее теле.
Назовем такое перемещения Земли пассивным движением, поскольку оно осуществляется без участия ядра планеты. Но через каждые 2,5 секунды ядро Земли мгновенно смещается на 75 км. внутри тела планеты, ликвидируя свое отставание от него, что и является подготовкой Земли к мгновенному прыжку. И только после этого Земля совершает мгновенный прыжок на расстояние одного слоя пространства совместно со своим ядром и его персональным пространством. Назовем такое перемещение активным движением Земли в околосолнечном пространстве.
При активном же перемещении Земля движется совместно со своим ядром, что позволяет ей через каждые 2,5 секунды удаляться от Солнца на один слой пространства, постоянно увеличивая, тем самым, на такую же величину радиус орбиты Земли. Современная физика не разделяет движение небесных тел на активную и пассивную составляющие. Поэтому она не может учесть постоянного увеличения радиусов орбит небесных тел, движущихся вокруг своих центральных тел.
Этим объясняется причина того, что за 2,5 секунды Земля перемещается на 75 км. больше, чем предусматривалось расчетом. Таков результат пассивного (орбитального) движения Земли.
Для того, чтобы ядро Земли могло через каждые 2,5 секунды возвращаться в исходное положение, в центре планеты должна существовать свободная от вещества полость, диаметром более 150 км., в которой ядро планеты может осуществлять свои мгновенные прыжки.
Каждый мгновенный прыжок ядра Земли, повторяющийся через 2,5 секунды, завершается динамическим ударом в тело Земли, вызывая ее сотрясения. Сотрясения меньшей интенсивности Земля регулярно испытывает и от более частых ударов ядер остальных иерархий в ее теле. Динамические удары всех ядер не вызывают заметных колебаний почвы, которые могут быть зарегистрированы сейсмическими приборами. Их можно обнаружить только в виде радиоволн волн, рождаемых этими ударами. Но такое глобальное наблюдение Земли можно осуществлять приборами, расположенными за пределами персонального пространства планеты. К сожалению, эти наблюдения пока не осуществляются.
А.Б. Северный на протяжении восьми лет регулярно проводил наблюдения Солнца. Он обнаружил пульсацию тела Солнца, в процессе которого его диаметр изменяется на 10 км. Эти регулярные пульсации повторяются через каждые 160 минут. Они синхронно сопровождаются изменениями частоты и длины радиоволн, излучаемых Солнцем. Если глобальные колебания поверхности Солнца вызваны регулярными ударами ядра Солнца, которое располагается в его полости, то изменению частоты и диапазона радиоволн Солнца предшествуют динамические удары в его тело находящихся в нем ядер остальных иерархий. Следовательно, период подготовки Солнца к своему очередному мгновенному прыжку равен 160,010 минуты.
Столь незначительные колебания атмосферы других звезд, вызванных динамическими ударами их ядер, невозможно зарегистрировать вследствие удаленности их. Но радиоволны, рождаемые в недрах звезд при каждом динамическом ударе, регистрируются повсеместно. Их уверенно фиксируют радиоастрономы. У звезд с незначительной атмосферой, затрудняющей их распространение, удается фиксировать даже радиоволны, которые рождаются динамическими ударами ядер малых иерархий. Эти радиоволны обладают чрезвычайной высокой частотой. Такие звезды назвали пульсарами.
Если Земля каждые 2,5 секунды удаляется от Солнца, то она погружается в околосолнечное пространство, в котором уменьшается отрицательная энергия удержания по мере удаления от него. В результате регулярного уменьшения отрицательной энергии удержания, действующей извне на персональное пространство Земли, в теле планеты будут происходить распады вещества, из продуктов которого рождаются новые ядра соответствующих иерархий. Каждому новорожденному ядру необходимо соответствующее количество персонального пространства, которое оно может получить только за счет изъятия его из объема персонального пространства ядра Земли. Таким образом, удаление Земли от Солнца сопровождается уменьшением объема персонального пространства ядра Земли, в то время как суммарный объем персонального пространства тела Земли при распаде в нем вещества будет возрастать.
Регулярное уменьшение объема персонального пространства ядра Земли, которое непосредственно участвует в подготовке Земли к мгновенному прыжку, приводит к сокращению времени подготовки ее к очередному прыжку. В результате Земля будет чаще совершать свои мгновенные прыжки.
Сокращение времени подготовки Земли к очередному прыжку должно сопровождаться соответствующим уменьшением ее скорости орбитального движения. Если действительно Земля совершает пассивное (орбитальное) движение в течение 2,5 секунд, то при сокращении этого времени она преодолеет меньший участок своей орбиты. В результате, по мере удаления планет от Солнца, их орбитальные скорости должны уменьшаться. Наблюдения подтверждают этот фундаментальный вывод.
Кроме того, в результате регулярного сокращения времени подготовки Земли к очередному мгновенному прыжку от Солнца, она, как и остальные планеты, будет удаляться от Солнца с постоянным (удвоенным) ускорением. Поэтому каждая последующая планета должна располагаться от Солнца почти в два раза дальше, чем предыдущая, что и подтверждено в правиле Тициуса-Боде. Причина «отсутствия» планеты в кольце Малых планет и «неправильное» расположение в Солнечной системе планеты Нептун, требуют отдельного рассмотрения.
Американцы установили на Луне отражатель, при помощи которого выяснили, что Луна регулярно удаляется от Земли каждый год почти на 40 миллиметров, подтвердив, тем самым, полученный здесь результат. Если установить подобный отражатель на Марсе, то уже через год можно будет получить еще одно подтверждение.
Кроме того, на основании полученного американцами результата можно определить ориентировочную толщину слоя пространства. Если предположить, что радиус персонального пространства Луны равен ее удалению от поверхности Земли, то толщина одного слоя пространства ориентировочно равна 1,6х10-7 см. Уточнить величину слоя пространства можно только после измерения скорости удаления Марса от Земли. Не исключено, что толщина слоя пространства окажется на два-три порядка меньше.
Поскольку орбитальное движение Земли обеспечивают все иерархии объектов в ее теле, то на ранней стадии ее развития, когда Земля имела только свое ядро и персональное пространство, она удаляясь от Солнца, не обращалась вокруг него. [6]
2.3 Изменение освещения и нагревания северного и южного полушарий по сезонам года
осевой земля орбитальный вращение
Рис. 9. Расположение крайних суточных параллелей Солнца для средних широт северного полушария
Рис. 10. Эклиптикальная система координат.
56° составляет всего лишь 11°, при долготе дня около 7 часов (29% от длины суток)! Неудивительно, что зимой бывает так холодно.
84°.5 бывают «настоящая» полярная ночь круглые сутки, а точнее, все время, пока склонение Солнца d—
Подобные документы
Спектральный анализ и прогноз данных неравномерности вращения Земли с помощью программы по обработке данных методом сингулярного спектрального анализа. Астрономические и палеонтологические данные. Движение полюсов, природа периодических колебаний.
курсовая работа [1,0 M], добавлен 11.06.2015
Скорость вращения галактики как скорость вращения различных компонентов галактики вокруг её центра. Особенности движения газа и звёзд. Распределение звезд, анализ их поля скоростей как информация о движении в галактике, оценка вероятности столкновения.
статья [34,3 K], добавлен 01.10.2010
Видимое движение светил как следствие их собственного движения в пространстве, вращения Земли и её обращения вокруг Солнца. Принципы определения географических координат по астрономическим наблюдениям.
шпаргалка [25,7 K], добавлен 01.07.2008
Происхождение Земли. Модель расширяющейся Вселенной. Модель Большого Взрыва. Космическая пыль. Развитие Земли. Основные положения глобальной тектоники. Концепции современного естествознания. Динамика звездных систем.
реферат [14,3 K], добавлен 19.02.2003
Форма, размеры и движение Земли. Поверхность Земли. Внутреннее строение Земли. Атмосфера Земли. Поля Земли. История исследований. Научный этап исследования Земли. Общие сведения о Земле. Движение полюсов. Затмение.
реферат [991,6 K], добавлен 28.03.2007
презентация [1,6 M], добавлен 22.03.2015
Место планеты Земля в космическом пространстве, ее связь с другими космическими телами. Форма, размеры и масса планеты, особенности гравитационного и магнитного поля Земли. Оболочки Земли: атмосфера, стратосфера, термосфера, гидросфера, литосфера.
реферат [22,6 K], добавлен 20.05.2010
Обзор миссий к точкам либрации. Методы моделирования движения космического аппарата вблизи точек либрации. Моделирование орбитального движения спутника в окрестности первой точки либрации L1 системы Солнце-Земля. Осуществление непрерывной связи.
дипломная работа [2,2 M], добавлен 17.10.2016
Классификация спутников Земли, виды космических кораблей и станций. Порядок вычисления круговой орбитальной скорости. Особенности движения спутников вблизи Земли. Характеристика электромагнитных волн. Принципы работы аппаратуры оптических спутников.
презентация [10,9 M], добавлен 02.10.2013
Хронология изучения объекта J002E2. Тайна «нового спутника Земли» разгадана. Новая «луна», вращающуюся вокруг Земли. Космический каменный обломок, попавший в зону земного притяжения, или отработанный корпус ракеты?
реферат [14,9 K], добавлен 09.10.2006