Что такое ортогональный чертеж
Ортогональный чертеж
Ортогональный чертеж, который еще известен как «метод параллельного проецирования», есть изображение предмета, отдельные виды которого параллельно спроецированы на две (или три) взаимно перпендикулярные плоскости. Это самый точный и рациональный метод изображений предмета на плоскости, на котором основана вся система современного проекционного черчения. Ортогональный чертеж является самой распространенной формой сообщения информации о проектируемом объекте, которая позволяет не только достоверно передать в изображении геометрические параметры формы, но и путем масштабных преобразований соотнести ее изображение с истинными размерами предмета.
За основные плоскости проекций приняты шесть граней куба, на которые может быть спроецирован любой предмет. Совмещение этих граней с фронтальной плоскостью обеспечивает получение определенного взаимоположения шести проекций изображаемого предмета. В зависимости от содержания изображения подразделяются на виды, разрезы, сечения.
Видом называется изображение обращенной к наблюдателю видимой части поверхности предмета. Разрезом называется деталь (предмет), мысленно рассеченный одной или несколькими условными секущими плоскостями. Сечением называется фигура, полученная в результате рассечения массива детали секущей плоскостью.
В исполнении ортогональных чертежей следует:
— исполнять чертеж в соответствии с обязательной ориентацией чертежных проекций относительно вертикальной и горизонтальной осей;
— располагать чертежные проекции таким образом, чтобы между ними была проекционная взаимосвязь;
— считать предметом особого внимания композицию чертежа, для чего необходимо тщательно взвешивать композиционную взаимосвязь чертежных проекций, надписей, размеров, масштабных линий и т.д.
Если нет точного, проработанного в деталях линейного карандашного чертежа с изображением осей, размерных и масштабных линий, цифровых и шрифтовых надписей, то не может быть и качественной тушевой обводки чертежа, хорошего исполнения тушевой отмывки или цветной графики.
ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ И ОСНОВНЫЕ ВИДЫ ЧЕРТЕЖА
Рассмотрим основные принципы прямоугольного проецирования и способ получения ортогонального чертежа в системе трех плоскостей проекций. На рис. 4.8, а показано расположение трех плоскостей проекций, с помощью которых получают ортогональный чертеж. Плоскости располагаются под углом 90° друг к другу.
Плоскость H — горизонтальная плоскость проекций, плоскость V — фронтальная плоскость проекций, плоскость W — профильная плоскость проекций.
Линии пересечения плоскостей проекций называются осями проекций, или осями координат и обозначаются Ox, Оу, Oz. Точка пересечения трех осей координат (точка О) является началом координат, т.е. точкой, от которой ведется отсчет координат по осям Ox, Qy, Oz. Угол, образованный тремя плоскостями проекций, называют координатным у г л о м, так как плоскости проекций являются базами отсчета расстояний (координат) и ограничивают пространство плоскостями проекций, в котором располагают проецируемые предметы.
Помещая изображаемый (проецируемый) предмет (геометрическая фигура, модель, деталь и т.п.) в определенное положение относительно плоскостей проекций V. Н и W, фиксируют его положение относительно этих плоскостей, что дает возможность получить взаимосвязанные изображения данного предмета, по которым легко представить его положение в пространстве, его форму. Каждое изображение (проекция) предмета на плоскость отображает то, что мы видим при взгляде на предмет в определенном направлении. Чтобы получить представление о форме предмета, обычно недостаточно рассмотреть предмет с какой-то одной стороны. Проецируя предмет в системе трех плоскостей проекций, его рассматривают с трех сторон, в направлениях, перпендикулярных трем плоскостям проекций.
Изображения, полученные на плоскостях координатного угла и совмещенные в одну плоскость, называют эпюром или ортогональным чертежом.
Проекции изделия на различные плоскости прямоугольной проекции представлены на Рис. 4.9 и 4.10
Рассмотрим построение эпюры точки.
ПРОЕКЦИИ ТОЧКИ
На рисунке перпендикуляр к плоскости Н параллелен оси Oz. Точку пересечения луча с плоскостью Н (точку а) выбирают произвольно. Отрезок Аа определяет, на каком расстоянии находится точка А от плоскости Н, указывая тем самым однозначно положение точки А на рисунке по отношению к плоскостям проекций. Точка а является прямоугольной проекцией точки А на плоскость Н и называется горизонтальной проекцией точки А (рис. 4.12, а).
Для получения изображения точки А на плоскости V (рис. 4.12,б) через точку А проводят проецирующий луч перпендикулярно фронтальной плоскости проекций V. На рисунке перпендикуляр к плоскости V параллелен оси Оу. На плоскости Н расстояние от точки А до плоскости V изобразится отрезком аах, параллельным оси Оу и перпендикулярным оси Ох. Если представить себе, что проецирующий луч и его изображение проводят одновременно в направлении плоскости V, то когда изображение луча пересечет ось Ох в точке ах, луч пересечет плоскость V в точке а’. Проведя из точки ах в плоскости V перпендикуляр к оси Ох, который является изображением проецирующего луча Аа на плоскости V, в пересечении с проецирующим лучом получают точку а’. Точка а’ является фронтальной проекцией точки А, т. е. ее изображением на плоскости V.
Изображение точки А на профильной плоскости проекций (рис. 4.12, в) строят с помощью проецирующего луча, перпендикулярного плоскости W. На рисунке перпендикуляр к плоскости W параллелен оси Ох. Проецирующий луч от точки А до плоскости W на плоскости Н изобразится отрезком аау, параллельным оси Ох и перпендикулярным оси Оу. Из точки Оу параллельно оси Oz и перпендикулярно оси Оу строят изображение проецирующего луча аА и в пересечении с проецирующим лучом получают точку а». Точка а» является профильной проекцией точки А, т. е. изображением точки А на плоскости W.
Точку а» можно построить, проведя от точки а’ отрезок а’аz (изображение проецирующего луча Аа» на плоскости V) параллельно оси Ох, а от точки аz — отрезок а»аz параллельно оси Оу до пересечения с проецирующим лучом.
Получив три проекции точки А на плоскостях проекций, координатный угол развертывают в одну плоскость, как показано на рис. 4.11,б, вместе с проекциями точки А и проецирующих лучей, а точку А и проецирующие лучи Аа, Аа’ и Аа» убирают. Края совмещенных плоскостей проекций не проводят, а проводят только оси проекций Oz, Оу и Ох, Оу1 (рис. 4.13).
Анализ ортогонального чертежа точки показывает, что три расстояния — Аа’, Аа и Аа» (рис. 4.12, в), характеризующие положение точки А в пространстве, можно определить, отбросив сам объект проецирования — точку А, на развернутом в одну плоскость координатном угле (рис. 4.13). Отрезки а’аz, ааy и Оах равны Аа» как противоположные стороны соответствующих прямоугольников (рис. 4.12,в и 4.13). Они определяют расстояние, на котором находится точка А от профильной плоскости проекций. Отрезки а’ах, а»ау1 и Оау равны отрезку Аа, определяют расстояние от точки А до горизонтальной плоскости проекций, отрезки аах, а»аz и Оаy1 равны отрезку Аа’, определяющему расстояние от точки А до фронтальной плоскости проекций.
Отрезки Оах, Оау и Оаz, расположенные на осях проекций, являются графическим выражением размеров координат X, Y и Z точки А. Координаты точки обозначают с индексом соответствующей буквы. Измерив величину этих отрезков, можно определить положение точки в пространстве, т. е. задать координаты точки.
На эпюре отрезки а’ах и аах располагаются как одна линия, перпендикулярная к оси Ох а отрезки а’аz и a»az — к оси Оz. Эти лини называются линиями проекционной связи. Они пересекают оси проекций в точках ах и аz соответственно. Линия проекционной связи, соединяющая горизонтальную проекцию точки А с профильной, оказалась «разрезанной» в точке ау.
Две проекции одной и той же точки всегда располагаются на одной линии проекционной связи, перпендикулярной к оси проекций.
Для представления положения точки в пространстве достаточно двух ее проекций и заданного начала координат (точка О) На рис. 4.14, б две проекции точки полностью определяют ее положение в пространстве По этим двум проекциям можно построит профильную проекцию точки А. Поэтому в дальнейшем, если не будет необходимости в профильной проекции, эпюры будут построены на двух плоскостях проекций: V и Н.
Рассмотрим несколько примеров построения и чтения чертежа точки.
Пример 1. Определение координат точки J заданной на эпюре двумя проекциях (рис. 4.14). Измеряются три отрезка: отрезок ОвХ (координата X), отрезок bХb (координата Y) и отрезок bХb’ (координата Z). Координаты записывают в следующем п рядке: X, Y и Z, после буквенного обозначения точки, например, В20; 30; 15.
Пример 2. Построение точки по заданным координатам. Точка С задана координатами С30; 10; 40. На оси Ох (рис. 4.15) находят точку сх, в которой линия проекционной связи пересекает ось проекций. Для этого по оси Ох от начала координат (точка О) откладывают координату X (размер 30) и получают точку сх. Через эту точку перпендикулярно оси Ох проводят линию проекционной связи и от точки вниз откладывают координату У (размер 10), получают точку с — горизонтальную проекцию точки С. Вверх от точки сх по линии проекционной связи откладывают координату Z (размер 40), получают точку с’ — фронтальную проекцию точки С.
Пример 3. Построение профильной проекции точки по заданным проекциям. Заданы проекции точки D — d и d’. Через точку О проводят оси проекций Oz, Oy и Оу1 (рис. 4.16, а). Для построения профильной проекции точки D отточки d’ проводят линию проекционной связи, перпендикулярную оси Oz, и продолжают ее вправо за ось Oz. На этой линии будет располагаться профильная проекция точки D. Она будет находиться на таком расстоянии от оси Oz, на каком горизонтальная проекция точки d располагается: от оси Ох, т. е. на расстоянии ddx. Отрезки dzd» и ddx одинаковы, так как определяют одно и то же расстояние — расстояние от точки D до фронтальной плоскости проекций. Это расстояние является координатой У точки D.
Графически отрезок dzd» строят перенесением отрезка ddx с горизонтальной плоскости проекций на профильную. Для этого проводят линию проекционной связи параллельно оси Ох, получают на оси Оу точку dy (рис. 4.16,б). Затем переносят размер отрезка Ody на ось Оу1, проведя из точки О дугу радиусом, равным отрезку Ody, до пересечения с осью Оу1 (рис. 4.16,б), получают точку dy1. Эту точку можно построить и как показано на рис. 4.16, в, проведя прямую под углом 45° к оси Оу из точки dy. Из точки dy1 проводят линию проекционной связи параллельно оси Oz и на ней откладывают отрезок, равный отрезку d’dx, получают точку d».
Перенос величины отрезка dxd на профильную плоскость проекций можно осуществить с помощью постоянной прямой чертежа (рис. 4.16, г). В этом случае линию проекционной связи ddy проводят через горизонтальную проекцию точки параллельно оси Оу1 до пересечения с постоянной прямой, а затем параллельно оси Оу до пересечения с продолжением линии проекционной связи d’dz.
Частные случаи расположения точек относительно плоскостей проекций
Положение точки относительно плоскости проекций определяется соответствующей координатой, т. е. величиной отрезка линии проекционной связи от оси Ох до соответствующей проекции. На рис. 4.17 координата У точки А определяется отрезком аах — расстояние от точки А до плоскости V. Координата Z точки А определяется отрезком а’ах — расстояние от точки А до плоскости Н. Если одна из координат равна нулю, то точка расположена на плоскости проекций. На рис. 4.17 приведены примеры различного расположения точек относительно плоскостей проекций. Координата Z точки В равна нулю, точка находится в плоскости Н. Ее фронтальная проекция находится на оси Ох и совпадает с точкой bх. Координата У точки С равна нулю, точка располагается на плоскости V, ее горизонтальная проекция с находится на оси Ох и совпадает с точкой сх.
Следовательно, если точка находится на плоскости проекций, то одна из проекций этой точки лежит на оси проекций.
На рис. 4.17 координаты Z и Y точки D равны нулю, следовательно, точка D находится на оси проекций Ох и две ее проекции совпадают.
ПРОЕКЦИИ ПРЯМОЙ
При проецировании прямой на какую-либо плоскость проекций проецирующие лучи, проходящие через точки прямой, образуют проецирующую плоскость, которая пересекает плоскость проекции по прямой (рис. 4.18). Следовательно, проекцией отрезка будет отрезок прямой. Чаще всего проекция отрезка меньше самого отрезка, так как его проекция (ab) является частью катета прямоугольной: треугольника (ВbМ), а отрезок (АВ) — частью гипотенузы. Так как Mb а’ах, т. е. ZB>ZA, и точка В ближе к плоскости V, чем точка А, так как bbxx, т. е. YB
ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ И ОСНОВНЫЕ ВИДЫ ЧЕРТЕЖА
Рассмотрим основные принципы прямоугольного проецирования и способ получения ортогонального чертежа в системе трех плоскостей проекций. На рис. 4.8, а показано расположение трех плоскостей проекций, с помощью которых получают ортогональный чертеж. Плоскости располагаются под углом 90° друг к другу.
Плоскость H — горизонтальная плоскость проекций, плоскость V — фронтальная плоскость проекций, плоскость W — профильная плоскость проекций.
Линии пересечения плоскостей проекций называются осями проекций, или осями координат и обозначаются Ox, Оу, Oz. Точка пересечения трех осей координат (точка О) является началом координат, т.е. точкой, от которой ведется отсчет координат по осям Ox, Qy, Oz. Угол, образованный тремя плоскостями проекций, называют координатным у г л о м, так как плоскости проекций являются базами отсчета расстояний (координат) и ограничивают пространство плоскостями проекций, в котором располагают проецируемые предметы.
Помещая изображаемый (проецируемый) предмет (геометрическая фигура, модель, деталь и т.п.) в определенное положение относительно плоскостей проекций V. Н и W, фиксируют его положение относительно этих плоскостей, что дает возможность получить взаимосвязанные изображения данного предмета, по которым легко представить его положение в пространстве, его форму. Каждое изображение (проекция) предмета на плоскость отображает то, что мы видим при взгляде на предмет в определенном направлении. Чтобы получить представление о форме предмета, обычно недостаточно рассмотреть предмет с какой-то одной стороны. Проецируя предмет в системе трех плоскостей проекций, его рассматривают с трех сторон, в направлениях, перпендикулярных трем плоскостям проекций.
Изображения, полученные на плоскостях координатного угла и совмещенные в одну плоскость, называют эпюром или ортогональным чертежом.
Проекции изделия на различные плоскости прямоугольной проекции представлены на Рис. 4.9 и 4.10
Лекция 1. Методы проецирования
1.1. Центральное проецирование
Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.
Центральное проецирование заключается в проведении через каждую точку (А, В, С,…) изображаемого объекта и определённым образом выбранный центр проецирования (S) прямой линии (SA, SB, >… — проецирующего луча).
Рисунок 1.1 – Центральное проецирование
Введём следующие обозначения (Рисунок 1.1):
SA, SB – проецирующие прямые (проецирующие лучи).
Примечание: левой клавишей мыши можно переместить точку в горизонтальной плоскости, при щелчке на точке левой клавишей мыши, изменится направление перемещения и можно будет ее переместить по вертикали.
Центральной проекцией точки называется точка пересечения проецирующей прямой, проходящей через центр проецирования и объект проецирования (точку), с плоскостью проекций.
Докажем это утверждение.
На рисунке 1.1: точка А1 – центральная проекция точки А на плоскости проекций π1. Но эту же проекцию могут иметь все точки, лежащие на проецирующей прямой. Возьмём на проецирующей прямой SA точку С. Центральная проекция точки С (С1) на плоскости проекций π1 совпадает с проекцией точки А (А1):
Следует вывод, что по проекции точки нельзя судить однозначно о её положении в пространстве.
Чтобы устранить эту неопределенность, т.е. сделать чертеж обратимым, введём еще одну плоскость проекций (π2) и ещё один центр проецирования (S2) (Рисунок 1.2).
Рисунок 1.2 – Иллюстрация 1-го и 2-го свойств
Построим проекции точки А на плоскости проекций π2. Из всех точек пространства только точка А имеет своими проекциями А1 на плоскость π1 и А2 на π2 одновременно. Все другие точки лежащие на проецирующих лучах будут иметь хотя бы одну отличную проекцию от проекций точки А (например, точка В).
Докажем данное свойство.
Соединим точки А и В между собой (Рисунок 1.2). Получим отрезок АВ, задающий прямую. Треугольник ΔSAB задает плоскость, обозначенную через σ. Известно, что две плоскости пересекаются по прямой: σ∩π1=А1В1, где А1В1 – центральная проекция прямой, заданной отрезком АВ.
Метод центрального проецирования – это модель восприятия изображения глазом, применяется главным образом при выполнении перспективных изображений строительных объектов, интерьеров, а также в кинотехнике и оптике. Метод центрального проецирования не решает основной задачи, стоящей перед инженером – точно отразить форму, размеры предмета, соотношение размеров различных элементов.
1.2. Параллельное проецирование
Рассмотрим метод параллельного проецирования. Наложим три ограничения, которые позволят нам, пусть и в ущерб наглядности изображения, получить чертёж более удобным для использования его на практике:
Таким образом, наложив эти ограничения на метод центрального проецирования, мы пришли к его частному случаю – методу параллельного проецирования (Рисунок 1.3).Проецирование, при котором проецирующие лучи, проходящие через каждую точку объекта, параллельно выбранному направлению проецирования P, называется параллельным.
Рисунок 1.3 – Метод параллельного проецирования
Проведём через точки А и В проецирующие лучи, параллельные заданному направлению проецирования Р. Проецирующий луч проведённый через точку А пересечёт плоскость проекций π1 в точке А1. Аналогично проецирующий луч, проведённый через точку В пересечет плоскость проекций в точке В1. Соединив точки А1 и В1, получим отрезок А1 В1– проекция отрезка АВ на плоскость π1.
1.3. Ортогональное проецирование. Метод Монжа
Четырехугольник АА1В1В задаёт плоскость γ, которая называется проецирующей, поскольку она перпендикулярна к плоскости π1 (γ⊥π1). В дальнейшем будем использовать только прямоугольное проецирование.
Рисунок 1.4 – Ортогональное проецирование
Рисунок 1.5- Монж, Гаспар (1746-1818)
Основоположником ортогонального проецирования считается французский учёный Гаспар Монж (Рисунок 1.5).
До Монжа строители, художники и учёные обладали довольно значительными сведениями о проекционных способах, и, всё же, только Гаспар Монж является творцом начертательной геометрии как науки.
Гаспар Монж родился 9 мая 1746 года в небольшом городке Боне (Бургундия) на востоке Франции в семье местного торговца. Он был старшим из пяти детей, которым отец, несмотря на низкое происхождение и относительную бедность семьи, постарался обеспечить самое лучшее образование из доступного в то время для выходцев из незнатного сословия. Его второй сын, Луи, стал профессором математики и астрономии, младший — Жан также профессором математики, гидрографии и навигации. Гаспар Монж получил первоначальное образование в городской школе ордена ораторианцев. Окончив её в 1762 году лучшим учеником, он поступил в колледж г. Лиона, также принадлежавший ораторианцам. Вскоре Гаспару доверяют там преподавание физики. Летом 1764 года Монж составил замечательный по точности план родного города Бона. Необходимые при этом способы и приборы для измерения углов и вычерчивания линий были изобретены самим составителем.
Во время обучения в Лионе получил предложение вступить в орден и остаться преподавателем колледжа, однако, вместо этого, проявив большие способности к математике, черчению и рисованию, сумел поступить в Мезьерскую школу военных инженеров, но (из-за происхождения) только на вспомогательное унтер-офицерское отделение и без денежного содержания. Тем не менее, успехи в точных науках и оригинальное решение одной из важных задач фортификации (о размещении укреплений в зависимости от расположения артиллерии противника) позволили ему в 1769 году стать ассистентом (помощником преподавателя) математики, а затем и физики, причём уже с приличным жалованием в 1800 ливров в год.
В 1770 году в возрасте 24-х лет Монж занимает должность профессора одновременно по двум кафедрам — математики и физики, и, кроме того, ведёт занятия по резанию камней. Начав с задачи точной резки камней по заданным эскизам применительно к архитектуре и фортификации, Монж пришёл к созданию методов, обобщённых им впоследствии в новой науке – начертательной геометрии, творцом которой он по праву считается. Учитывая возможность применения методов начертательной геометрии в военных целях при строительстве укреплений, руководство Мезьерской школы не допускало открытой публикации вплоть до 1799 года, книга вышла под названием Начертательная геометрия (Géométrie descriptive) (стенографическая запись этих лекций была сделана в 1795 году). Изложенный в ней подход к чтению лекций по этой науке и выполнению упражнений сохранился до наших дней. Еще один значительный труд Монжа – Приложение анализа к геометрии (L’application de l’analyse à la géometrie, 1795) – представляет собой учебник аналитической геометрии, в котором особый акцент делается на дифференциальных соотношениях.
В 1780 был избран членом Парижской академии наук, в 1794 стал директором Политехнической школы. В течение восьми месяцев занимал пост морского министра в правительстве Наполеона, заведовал пороховыми и пушечными заводами республики, сопровождал Наполеона в его экспедиции в Египет (1798–1801). Наполеон пожаловал ему титул графа, удостоил многих других отличий.
Метод изображения объектов по Монжу заключается в двух основных моментах:
1. Положение геометрического объекта в пространстве, в данном примере точки А, рассматривается относительно двух взаимно перпендикулярных плоскостей π1 и π2 (Рисунок 1.6).
Они условно разделяют пространство на четыре квадранта. Точка А расположена в первом квадранте. Декартова система координат послужила основой для проекций Монжа. Монж заменил понятие координатных осей проекций на линию пересечения плоскостей проекций (ось проекций) и предложил совместить координатные плоскости в одну путем поворота их вокруг координатных осей.
Рисунок 1.6 – Модель построения проекций точки
π1 – горизонтальная (первая) плоскость проекций
π2 – фронтальная (вторая) плоскость проекций
Рассмотрим пример проецирования точки А на две взаимно перпендикулярные плоскости проекций π1 и π2.
Опустим из точки А перпендикуляры (проецирующие лучи) на плоскости π1 и π2 и отметим их основания, то есть точки пересечения этих перпендикуляров (проецирующих лучей) с плоскостями проекций. А1 – горизонтальная (первая) проекция точки А;А2 – фронтальная (вторая) проекция точки А; АА1 и АА2 – проецирующие прямые. Стрелки показывают направление проецирования на плоскости проекций π1 и π2. Такая система позволяет однозначно определить положение точки относительно плоскостей проекций π1 и π2:
2. Совместим поворотом вокруг оси проекций π2/π1 плоскости проекций в одну плоскость (π1 с π2), но так, чтобы изображения не накладывались друг на друга, (в направлении α, Рисунок 1.6), получим изображение, называемое прямоугольным (ортогональным) чертежом (Рисунок 1.7):
Рисунок 1.7 – Ортогональный чертеж
1.4. Прямоугольные проекции точки. Свойства ортогонального чертежа
1. Две прямоугольные проекции точки лежат на одной линии проекционной связи, перпендикулярной к оси проекций.
2. Две прямоугольные проекции точки однозначно определяют её положение в пространстве относительно плоскостей проекций.
Убедимся в справедливости последнего утверждения, для чего повернём плоскость π1 в исходное положение (когда π1⊥π2). Для того, чтобы построить точку А необходимо из точек А1 и А2 восстановить проецирующие лучи, а фактически – перпендикуляры к плоскостям π1и π2, соответственно. Точка пересечения этих перпендикуляров фиксирует в пространстве искомую точку А. Рассмотрим ортогональный чертеж точки А (Рисунок 1.8).
Рисунок 1.8 – Построение эпюра точки
Введём третью (профильную) плоскость проекций π3 перпендикулярную π1 и π2 (задана осью проекций π2/π3).
Расстояние от профильной проекции точки до вертикальной оси проекций А‘0A3 позволяет определить расстояние от точки А до фронтальной плоскости проекций π2. Известно, что положение точки в пространстве можно зафиксировать относительно декартовой системы координат с помощью трёх чисел (координат) A(XA; YA; ZA) или относительно плоскостей проекций с помощью её двух ортогональных проекций (A1=(XA; YA); A2=(XA; ZA)). На ортогональном чертеже по двум проекциям точки можно определить три её координаты и, наоборот, по трём координатам точки, построить её проекции (Рисунок 1.9, а и б).
а б
Рисунок 1.9 – Построение эпюра точки по её координатам
По расположению на эпюре проекций точки можно судить о её расположении в пространстве:
Для определения в каком квадранте пространства расположена точка, достаточно определить знак координат точки.
X | Y | Z | |
---|---|---|---|
I | + | + | + |
II | + | — | + |
III | + | — | — |
IV | + | + | — |
Упражнение
Решение задачи: по оси OX отложить значение координаты XA=60, затем через эту точку на оси OX восстановить линию проекционной связи, перпендикулярную к OX, по которой вверх отложить значение координаты ZA=40, а вниз – значение координаты YA=20 (Рисунок 1.10). Все координаты положительные, значит точка расположена в I квадранте.
Рисунок 1.10 – Решение задачи
1.5. Задачи для самостоятельного решения
1. По эпюру определите положение точки относительно плоскостей проекций (Рисунок 1.11).
Рисунок 1.11
2. Достройте недостающие ортогональные проекции точек А, В, С на плоскости проекций π1, π2, π3 (Рисунок 1.12).
Рисунок 1.12
3. Постройте проекции точки:
4. Постройте ортогональные проекции точки К, расположенной во втором квадранте и удаленной от плоскостей проекций π1 на 40 мм, от π2 — на 15 мм.